Applications of (Proximal) Taimanov Theorem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 535-537

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P^*(X)$ be the algebra of bounded, real-valued proximally continuous functions on an $EF$-proximity space $(X, \delta)$, where $X$ is a dense subspace of a Tychonoff topological space $S$. Mattson obtained several conditions which are equivalent to the following property: every member of $P^*(X)$ has a continuous extension to $S$. In this paper, we generalize the above problem to $L$-proximity via proximal Taimanov theorem when $S$ is a $T_1$ space.
Keywords: Taimanov Theorem, $EF$-proximity, $L$-proximity, extension of continuous functions, bunch, Wallman topology.
@article{SEMR_2013_10_a30,
     author = {S. A. Naimpally},
     title = {Applications of {(Proximal)} {Taimanov} {Theorem}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {535--537},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a30/}
}
TY  - JOUR
AU  - S. A. Naimpally
TI  - Applications of (Proximal) Taimanov Theorem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 535
EP  - 537
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a30/
LA  - en
ID  - SEMR_2013_10_a30
ER  - 
%0 Journal Article
%A S. A. Naimpally
%T Applications of (Proximal) Taimanov Theorem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 535-537
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a30/
%G en
%F SEMR_2013_10_a30
S. A. Naimpally. Applications of (Proximal) Taimanov Theorem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 535-537. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a30/