Applications of (Proximal) Taimanov Theorem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 535-537.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P^*(X)$ be the algebra of bounded, real-valued proximally continuous functions on an $EF$-proximity space $(X, \delta)$, where $X$ is a dense subspace of a Tychonoff topological space $S$. Mattson obtained several conditions which are equivalent to the following property: every member of $P^*(X)$ has a continuous extension to $S$. In this paper, we generalize the above problem to $L$-proximity via proximal Taimanov theorem when $S$ is a $T_1$ space.
Keywords: Taimanov Theorem, $EF$-proximity, $L$-proximity, extension of continuous functions, bunch, Wallman topology.
@article{SEMR_2013_10_a30,
     author = {S. A. Naimpally},
     title = {Applications of {(Proximal)} {Taimanov} {Theorem}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {535--537},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a30/}
}
TY  - JOUR
AU  - S. A. Naimpally
TI  - Applications of (Proximal) Taimanov Theorem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 535
EP  - 537
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a30/
LA  - en
ID  - SEMR_2013_10_a30
ER  - 
%0 Journal Article
%A S. A. Naimpally
%T Applications of (Proximal) Taimanov Theorem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 535-537
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a30/
%G en
%F SEMR_2013_10_a30
S. A. Naimpally. Applications of (Proximal) Taimanov Theorem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 535-537. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a30/

[1] M. S. Gagrat, S. A. Naimpally, “Proximity approach to extension problems”, Fund. Math., 71 (1971), 63–76 | MR

[2] E. Hewitt, Mathematical Reviews, 1952

[3] M. Katětov, “On real-valued functions in topological spaces”, Fund. Math., 38 (1951), 85–91 | MR | Zbl

[4] M. W. Lodato, “On topologically induced generalized proximity relations”, Proc. Amer. Math. Soc., 15 (1964), 417–422 | DOI | MR | Zbl

[5] M. W. Lodato, “On topologically induced generalized proximity relations, II”, Pacific J. Math., 17 (1966), 131–135 | MR | Zbl

[6] D. A. Mattson, “Extensions of proximity functions”, Proc. Amer. Math. Soc., 26 (1970), 347–351 | DOI | MR | Zbl

[7] C. J. Mozzochi, M. S. Gagrat, S. A. Naimpally, Symmetric Generalized Topological Structures, Exposition Press, Hicksville, New York, 1976 | MR

[8] S. A. Naimpally, Proximity approach to problems in topology and analysis, Oldenbourg Verlag, Munich, 2009 | MR | Zbl

[9] S. A. Naimpally, B. D. Warrack, Proximity spaces, Cambridge Tracts in Mathematics, 59, Cambridge University Press, London-New York, 1970 ; Cambridge, 2008 | MR | Zbl | MR | Zbl

[10] Yu. M. Smirnov, “On systems of open sets in topological spaces”, Uspehi Matem. Nauk, 6:4(44) (1951), 204–206 | Zbl

[11] A. D. Taĭmanov, “On extension of continuous mappings of topological spaces”, Mat. Sbornik N. S., 31(73):2 (1952), 459–463 | MR

[12] B. Z. Vulih, “On the extension of continuous functions in topological spaces”, Mat. Sbornik N. S., 30(72):1 (1952), 167–170 | MR