Applications of (Proximal) Taimanov Theorem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 535-537
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $P^*(X)$ be the algebra of bounded, real-valued proximally continuous functions on an $EF$-proximity space $(X, \delta)$, where $X$ is a dense subspace of a Tychonoff topological space $S$. Mattson obtained several conditions which are equivalent to the following property: every member of $P^*(X)$ has a continuous extension to $S$. In this paper, we generalize the above problem to $L$-proximity via proximal Taimanov theorem when $S$ is a $T_1$ space.
Keywords:
Taimanov Theorem, $EF$-proximity, $L$-proximity, extension of continuous functions, bunch, Wallman topology.
@article{SEMR_2013_10_a30,
author = {S. A. Naimpally},
title = {Applications of {(Proximal)} {Taimanov} {Theorem}},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {535--537},
publisher = {mathdoc},
volume = {10},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a30/}
}
S. A. Naimpally. Applications of (Proximal) Taimanov Theorem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 535-537. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a30/