On the independence property and atomic formulas
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 38-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exists a theory with the independence property the atomic formulas of which do not have the independence property.
Keywords: the independence property.
@article{SEMR_2013_10_a3,
     author = {K. Zh. Kudaibergenov},
     title = {On the independence property and atomic formulas},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {38--40},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a3/}
}
TY  - JOUR
AU  - K. Zh. Kudaibergenov
TI  - On the independence property and atomic formulas
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 38
EP  - 40
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a3/
LA  - ru
ID  - SEMR_2013_10_a3
ER  - 
%0 Journal Article
%A K. Zh. Kudaibergenov
%T On the independence property and atomic formulas
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 38-40
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a3/
%G ru
%F SEMR_2013_10_a3
K. Zh. Kudaibergenov. On the independence property and atomic formulas. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 38-40. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a3/

[1] S. Shelah, “Stability, the f.c.p., and superstability”, Annals of Mathematical Logic, 3 (1971), 271–362 | DOI | MR | Zbl

[2] S. Shelah, Classification theory and the number of nonisomorphic models, North-Holland, Amsterdam, 1978 | MR | Zbl

[3] H. Adler, Introduction to theories without the independence property, preprint, http://www.logic.univie.ac.at/ãdler/Publications.html

[4] B. Poizat, “Théories instables”, Journal of Symbolic Logic, 46 (1981), 513–522 | DOI | MR | Zbl