Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2013_10_a29, author = {M. P. Limonov}, title = {On some aspects of a hyperbolic tangential quadrilateral}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {454--463}, publisher = {mathdoc}, volume = {10}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a29/} }
M. P. Limonov. On some aspects of a hyperbolic tangential quadrilateral. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 454-463. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a29/
[1] M. Josefsson, “Calculations Concerning the Tangent Lengths and Tangency Chords of a Tangential Quadrilateral”, Forum Geometricorum, 10 (2010), 119–130 | MR | Zbl
[2] A. F. Beardon, The geometry of discrete groups, Springer-Verlag, New York–Heidelberg–Berlin, 1983 | MR | Zbl
[3] W. J. M'Clelland, A Treatise on Spherical Trigonometry with application to Spherical Geometry and Numerous Examples, v. II, Macmillian and Co., London, 1886
[4] G. A. Bajgonakova, A. D. Mednykh, “On the Bretschneider's formula for a hyperbolic tangential quadrilateral”, Matematicheskie Zametki YAGU, 19:2 (2012), 12–20 (in Russian) | Zbl
[5] A. D. Mednykh, “Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane”, Siberian Electronic Mathematical Reports, 9 (2012), 247–255 | MR
[6] M. Hajja, “A condition for a circumscriptible quadrilateral to be cyclic”, Forum Geometricorum, 8 (2008), 103–106 | MR | Zbl
[7] K. Bezdek, “Ein elementarer Beweis für die isoperimetrische Ungleichung in der euklidischen und hyperbolischen Ebene”, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., 27 (1984), 107–112 | MR | Zbl
[8] J. E. Valentine, “An analogue of Ptolemy's theorem and its converse in hyperbolic geometry”, Pacific J. Math., 34 (1970), 817–825 | DOI | MR | Zbl