On some aspects of a hyperbolic tangential quadrilateral
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 454-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

Previously Martin Josefsson obtained certain properties of a tangential quadrilateral in terms of distances from the four vertices to the points of tangency. We consider the hyperbolic analogue of these properties. For the sake of clarity, most assertions are followed by the Euclidean case.
Keywords: hyperbolic tangential quadrilateral, tangent lengths.
@article{SEMR_2013_10_a29,
     author = {M. P. Limonov},
     title = {On some aspects of a hyperbolic tangential quadrilateral},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {454--463},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a29/}
}
TY  - JOUR
AU  - M. P. Limonov
TI  - On some aspects of a hyperbolic tangential quadrilateral
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 454
EP  - 463
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a29/
LA  - en
ID  - SEMR_2013_10_a29
ER  - 
%0 Journal Article
%A M. P. Limonov
%T On some aspects of a hyperbolic tangential quadrilateral
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 454-463
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a29/
%G en
%F SEMR_2013_10_a29
M. P. Limonov. On some aspects of a hyperbolic tangential quadrilateral. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 454-463. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a29/

[1] M. Josefsson, “Calculations Concerning the Tangent Lengths and Tangency Chords of a Tangential Quadrilateral”, Forum Geometricorum, 10 (2010), 119–130 | MR | Zbl

[2] A. F. Beardon, The geometry of discrete groups, Springer-Verlag, New York–Heidelberg–Berlin, 1983 | MR | Zbl

[3] W. J. M'Clelland, A Treatise on Spherical Trigonometry with application to Spherical Geometry and Numerous Examples, v. II, Macmillian and Co., London, 1886

[4] G. A. Bajgonakova, A. D. Mednykh, “On the Bretschneider's formula for a hyperbolic tangential quadrilateral”, Matematicheskie Zametki YAGU, 19:2 (2012), 12–20 (in Russian) | Zbl

[5] A. D. Mednykh, “Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane”, Siberian Electronic Mathematical Reports, 9 (2012), 247–255 | MR

[6] M. Hajja, “A condition for a circumscriptible quadrilateral to be cyclic”, Forum Geometricorum, 8 (2008), 103–106 | MR | Zbl

[7] K. Bezdek, “Ein elementarer Beweis für die isoperimetrische Ungleichung in der euklidischen und hyperbolischen Ebene”, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., 27 (1984), 107–112 | MR | Zbl

[8] J. E. Valentine, “An analogue of Ptolemy's theorem and its converse in hyperbolic geometry”, Pacific J. Math., 34 (1970), 817–825 | DOI | MR | Zbl