Analogs of a formula of Lobachevsky for angle of parallelism on the hyperbolic plane of positive curvature
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 393-407

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that on hyperbolic plane $\widehat {H}$ of positive curvature exists fifteen types of angles, angles of six types are measurable, angles of three types have the real measures. For quasiangles of parallelism, angles of quasiparallelism and angles of parallelism of the plane $\widehat{H}$ analogs of a formula of Lobachevsky are received.
Keywords: hyperbolic plane $\widehat{H}$ of positive curvature; quasiangle of parallelism; angle of quasiparallelism; angle of parallelism; analogs of a formula of Lobachevsky for angle of parallelism.
@article{SEMR_2013_10_a28,
     author = {L. N. Romakina},
     title = {Analogs of a formula of {Lobachevsky} for angle of parallelism on the hyperbolic plane of positive curvature},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {393--407},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a28/}
}
TY  - JOUR
AU  - L. N. Romakina
TI  - Analogs of a formula of Lobachevsky for angle of parallelism on the hyperbolic plane of positive curvature
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 393
EP  - 407
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a28/
LA  - ru
ID  - SEMR_2013_10_a28
ER  - 
%0 Journal Article
%A L. N. Romakina
%T Analogs of a formula of Lobachevsky for angle of parallelism on the hyperbolic plane of positive curvature
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 393-407
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a28/
%G ru
%F SEMR_2013_10_a28
L. N. Romakina. Analogs of a formula of Lobachevsky for angle of parallelism on the hyperbolic plane of positive curvature. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 393-407. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a28/