Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2013_10_a23, author = {I. S. Borisov}, title = {Stability of the partial sum process of residuals in a multiple linear regression model}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {727--732}, publisher = {mathdoc}, volume = {10}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a23/} }
TY - JOUR AU - I. S. Borisov TI - Stability of the partial sum process of residuals in a multiple linear regression model JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2013 SP - 727 EP - 732 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a23/ LA - ru ID - SEMR_2013_10_a23 ER -
I. S. Borisov. Stability of the partial sum process of residuals in a multiple linear regression model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 727-732. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a23/
[1] I. B. MacNeill, “Limit processes for sequences of partial sums of regression residuals”, Ann. Probab., 6:4 (1953), 695–698 | DOI | MR
[2] W. Bischoff, “A functional central limit theorem for regression models”, Ann. Statist., 26:4 (1998), 1348–1410 | MR
[3] Dzh. Seber, Lineinyi regressionnyi analiz, Mir, M., 1980 | MR
[4] Yu. Yu. Linke, A. I. Sakhanenko, “Asimptoticheski normalnoe otsenivanie parametra v zadache drobno-lineinoi regressii”, Sib. matem. zhurn., 41:1 (2000), 150–163 | MR | Zbl
[5] I. S. Borisov, A. V. Shadrin, “Nekotorye zamechaniya k neravenstvu Sh. S. Ebralidze”, Teoriya veroyatn. i ee primen., 41:1 (1996), 177–181 | DOI | MR | Zbl