Stability of the partial sum process of residuals in a multiple linear regression model
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 727-732
Cet article a éte moissonné depuis la source Math-Net.Ru
We discuss a refinement of the MacNeill's result (1978) on limit behavior of the so-called residual process of a linear regression model. We study stability of the process with respect to $L_2$-variations of the regressor. As an example, we consider the case when the regressor is a smooth function of the variational series based on $n$ identically distributed observations not necessarily independent.
Keywords:
linear regression, random regressor, residual process, least-square estimator, variational series.
@article{SEMR_2013_10_a23,
author = {I. S. Borisov},
title = {Stability of the partial sum process of residuals in a multiple linear regression model},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {727--732},
year = {2013},
volume = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a23/}
}
I. S. Borisov. Stability of the partial sum process of residuals in a multiple linear regression model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 727-732. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a23/
[1] I. B. MacNeill, “Limit processes for sequences of partial sums of regression residuals”, Ann. Probab., 6:4 (1953), 695–698 | DOI | MR
[2] W. Bischoff, “A functional central limit theorem for regression models”, Ann. Statist., 26:4 (1998), 1348–1410 | MR
[3] Dzh. Seber, Lineinyi regressionnyi analiz, Mir, M., 1980 | MR
[4] Yu. Yu. Linke, A. I. Sakhanenko, “Asimptoticheski normalnoe otsenivanie parametra v zadache drobno-lineinoi regressii”, Sib. matem. zhurn., 41:1 (2000), 150–163 | MR | Zbl
[5] I. S. Borisov, A. V. Shadrin, “Nekotorye zamechaniya k neravenstvu Sh. S. Ebralidze”, Teoriya veroyatn. i ee primen., 41:1 (1996), 177–181 | DOI | MR | Zbl