On asymptotics of the distribution of a two-step statistical estimator of a one-dimensional parameter
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 627-640.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors' approach to study two-step estimators of one-dimensional unknown parameters is extended to a wider classes of the first- and second-step estimators which include well known M-estimators. Under general restrictions necessary and sufficient conditions are found for the normalized difference between the second-step estimator and the unknown parameter to converge weakly to an arbitrary distribution.
Keywords: two-step estimators, impovement of statistical estimators, asymptotical normality, M-estimators
Mots-clés : limit distribution, regression.
@article{SEMR_2013_10_a21,
     author = {Yu. Yu. Linke and A. I. Sakhanenko},
     title = {On asymptotics of the distribution of a two-step statistical estimator of a one-dimensional parameter},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {627--640},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a21/}
}
TY  - JOUR
AU  - Yu. Yu. Linke
AU  - A. I. Sakhanenko
TI  - On asymptotics of the distribution of a two-step statistical estimator of a one-dimensional parameter
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 627
EP  - 640
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a21/
LA  - ru
ID  - SEMR_2013_10_a21
ER  - 
%0 Journal Article
%A Yu. Yu. Linke
%A A. I. Sakhanenko
%T On asymptotics of the distribution of a two-step statistical estimator of a one-dimensional parameter
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 627-640
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a21/
%G ru
%F SEMR_2013_10_a21
Yu. Yu. Linke; A. I. Sakhanenko. On asymptotics of the distribution of a two-step statistical estimator of a one-dimensional parameter. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 627-640. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a21/

[1] A. A. Borovkov, Matematicheskaya statistika, Izd-vo IM SO RAN, Novosibirsk, 1997 | MR | Zbl

[2] Sh. Zaks, Teoriya statisticheskikh vyvodov, Mir, M., 1975 | MR

[3] S. Verrill, “Rate of convergence of $k$-step Newton estimators to efficient likelihood estimators”, Statistical and Probability Letters, 77 (2007), 1371–1376 | DOI | MR | Zbl

[4] Yu. Yu. Linke, “Ob asimptotike raspredeleniya dvukhshagovykh statisticheskikh otsenok”, Sibirskii Matematicheskii Zhurnal, 52:4 (2011), 841–860 | MR | Zbl

[5] Yu. Yu. Linke, A. I. Sakhanenko, “Ob asimptotike raspredeleniya odnogo klassa dvukhshagovykh statisticheskikh otsenok mnogomernogo parametra”, Matematicheskie trudy, 16:1 (2013), 89–120 | MR

[6] Yu. Yu. Linke, A. I. Sakhanenko, “Asimptoticheski normalnoe otsenivanie parametra v zadache drobno-lineinoi regressii”, Sibirskii Matematicheskii Zhurnal, 41:1 (2000), 150–163 | MR | Zbl

[7] A. I. Sakhanenko, Yu. Yu. Linke, “Asimptoticheski optimalnoe otsenivanie v zadache drobno-lineinoi regressii so sluchainymi oshibkami v koeffitsientakh”, Sibirskii Matematicheskii Zhurnal, 47:6 (2006), 1372–1400 | MR | Zbl

[8] Yu. Yu. Linke, A. I. Sakhanenko, “Asimptoticheski normalnoe otsenivanie parametra v zadache drobno-lineinoi regressii so sluchainymi oshibkami v koeffitsientakh”, Sibirskii Matematicheskii Zhurnal, 49:3 (2008), 592–619 | MR | Zbl

[9] Yu. Yu. Linke, A. I. Sakhanenko, “Asimptoticheski optimalnoe otsenivanie v zadache lineinoi regressii pri nevypolnenii nekotorykh klassicheskikh predpolozhenii”, Sibirskii Matematicheskii Zhurnal, 50:2 (2009), 380–396 | MR

[10] Yu. Yu. Linke, A. I. Sakhanenko, “Asimptoticheski optimalnoe otsenivanie v zadache lineinoi regressii so sluchainymi oshibkami v koeffitsientakh”, Sibirskii Matematicheskii Zhurnal, 51:1 (2010), 128–145 | MR | Zbl

[11] A. I. Sakhanenko, Yu. Yu. Linke, “Uluchshenie otsenok v zadache lineinoi regressii so sluchainymi oshibkami v koeffitsientakh”, Sibirskii Matematicheskii Zhurnal, 52:1 (2011), 143–160 | MR | Zbl

[12] A. I. Sakhanenko, Yu. Yu. Linke, “Sostoyatelnoe otsenivanie v zadache lineinoi regressii so sluchainymi oshibkami v koeffitsientakh”, Sibirskii Matematicheskii Zhurnal, 52:4 (2011), 894–912 | MR | Zbl

[13] G. A. F. Seber, C. J. Wild, Nonlinear Regression, John Wiley and Sons, 2003 | MR

[14] J. S. Houwelingen, “Use and Abuse of Variance Models in Regression”, Biometrics, 44 (1988), 1073–1081 | DOI | Zbl

[15] T. Amemia, “Regression Analisys When the Variance of the Dependent Variable is Proportional to the Squares of its Expectation”, J. Amer. Stat. Assoc., 68:34 (1973), 928–934 | DOI | MR

[16] J. D. Jobson, W. A. Fuller, “Least Squares Estimation When the Covariance Matrix and the Parameter Vector are Functionally Related”, J. Amer. Stat. Assoc., 75:369 (1975), 176–181 | DOI | MR

[17] R. J. Carrol, D. Ruppert, “Robust estimation in heteroscedastic linear models”, Annals of Stat., 10:2 (1982), 429–441 | DOI | MR | Zbl

[18] V. A. Gurevich, “O vzveshennykh $M$-otsenkakh v nelineinoi regressii”, Teoriya veroyatnostei i ee primeneniya, 33:2 (1988), 421–424 | MR

[19] P. J. Bickel, “One-step Huber Estimates in the Linear Model”, J. Amer. Stat. Assoc., 70 (1975), 428–434 | DOI | MR | Zbl

[20] N. R. Draper, “Applied regression analysis bibliography update 1994–1997”, Commun. Statist.- Theory Meth., 27:10 (1998), 2581–2623 | DOI | MR | Zbl

[21] N. R. Draper, “Applied regression analysis bibliography update 1998–1999”, Commun. Statist.- Theory Meth., 29:9–10 (2000), 2313–2341 | MR | Zbl

[22] N. R. Draper, “Applied regression analysis bibliography update 2000–2001”, Commun. Statist.- Theory Meth., 31:11 (2002), 2051–2075 | DOI | MR | Zbl