On finite groups isospectral to finite simple unitary groups over fields of characteristic~2
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 31-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every group $U=PSU_n(2^k)$ with $n\geqslant 5$, we find the number of finite groups having the same element orders as $U$.
Keywords: recognition by spectrum, unitary group, field automorphism.
@article{SEMR_2013_10_a2,
     author = {M. A. Grechkoseeva and W. J. Shi},
     title = {On finite groups isospectral to finite simple unitary groups over fields of characteristic~2},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {31--37},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a2/}
}
TY  - JOUR
AU  - M. A. Grechkoseeva
AU  - W. J. Shi
TI  - On finite groups isospectral to finite simple unitary groups over fields of characteristic~2
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 31
EP  - 37
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a2/
LA  - en
ID  - SEMR_2013_10_a2
ER  - 
%0 Journal Article
%A M. A. Grechkoseeva
%A W. J. Shi
%T On finite groups isospectral to finite simple unitary groups over fields of characteristic~2
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 31-37
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a2/
%G en
%F SEMR_2013_10_a2
M. A. Grechkoseeva; W. J. Shi. On finite groups isospectral to finite simple unitary groups over fields of characteristic~2. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 31-37. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a2/

[1] W. J. Shi, “On the order and the element orders of finite groups: results and problems”, Ischia Group Theory 2010, Proceedings of the Conference, eds. Bianchi Mariagrazia et al., World Scientific Publishing, 2011, 313–333

[2] M. A. Grechkoseeva, W. J. Shi, A. V. Vasil'ev, “Recognition by spectrum for finite simple groups of Lie type”, Front. Math. China, 3:2 (2008), 275–285 | DOI | MR | Zbl

[3] V. D. Mazurov, “Groups with a prescribed spectrum”, Izv. Ural. Gos. Univ. Mat. Mekh., 36 (2005), 119–138 (in Russian) | MR | Zbl

[4] W. J. Shi, “On the simple $K_3$-groups”, J. Southwest China Normal Univ. (N.S.), 13:3 (1988), 1–4 (in Chinese) | MR | Zbl

[5] V. D. Mazurov, “Recognition of finite groups by a set of orders of their elements”, Algebra and Logic, 37:6 (1998), 371–379 | DOI | MR | Zbl

[6] V. D. Mazurov, M. C. Xu, H. P. Cao, “Recognition of the finite simple groups $L_3(2^m)$ and $U_3(2^m)$ by their element orders”, Algebra and Logic, 39:5 (2000), 324–334 | DOI | MR

[7] W. J. Shi, “A characterization of $U_3(2^n)$ by their element orders”, J. Southwest China Normal Univ.( N.S.), 25:4 (2000), 353–360 | MR

[8] V. D. Mazurov, G. Y. Chen, “Recognizability of the finite simple groups $L_4(2^m)$ and $U_4(2^m)$ by the spectrum”, Algebra and Logic, 47:1 (2008), 49–55 | DOI | MR | Zbl

[9] W. J. Shi, H. L. Li, “A characterization of $M_{12}$ and $PSU(6,2)$”, Acta Math. Sinica, 32:6 (1989), 758–764 (in Chinese) | MR | Zbl

[10] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR

[11] A. A. Buturlakin, “Spectra of finite linear and unitary groups”, Algebra and Logic, 47:2 (2008), 91–99 | DOI | MR | Zbl

[12] A. V. Zavarnitsine, “Recognition of the simple groups $U_3(q)$ by element orders”, Algebra and Logic, 45:2 (2006), 106–116 | DOI | MR | Zbl

[13] A. V. Zavarnitsine, “Recognition of the simple groups $L_3(q)$ by element orders”, J. Group Theory, 7:1 (2004), 81–97 | MR | Zbl

[14] M. A. Grechkoseeva, “Recognition by spectrum for finite linear groups over fields of characteristic $2$”, Algebra and Logic, 47:4 (2008), 229–241 | DOI | MR | Zbl

[15] M. A. Grechkoseeva, “Quasirecognizability of simple unitary groups over fields of even order”, Sib. Electron. Math. Rep., 7 (2010), 435–444 | MR

[16] M. A. Grechkoseeva, “On element orders in covers of finite simple classical groups”, J. Algebra, 339 (2011), 304–319 | DOI | MR | Zbl

[17] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, v. 3, Mathematical Surveys and Monographs, 40.3, American Mathematical Society, Providence, RI, 1998 | MR | Zbl

[18] A. V. Vasil'ev, E. P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group”, Algebra and Logic, 44:6 (2005), 381–406 | DOI | MR

[19] A. V. Vasil'ev, E. P. Vdovin, “Cocliques of maximal size in the prime graph of a finite simple group”, Algebra and Logic, 50:4 (2011), 291—322 | DOI | MR

[20] Huaiyu He, Wujie Shi, “A note on the ajacency criterion for the prime graph and characterization of $C_p(3)$”, Algebra Colloq., 19:3 (2012), 553—562 | Zbl