On automorphisms of a distance-regular graph with intersection array $\{27,24,1;1,8,27\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 689-698
Voir la notice de l'article provenant de la source Math-Net.Ru
Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array $\{27,24,1;1,8,27\}$. It is shown, that there exists the unique (up to isomorphism) arc-transitive distance-regular graph with intersection array $\{27,24,1;1,8,27\}$. This graph is obtainable by the Cameron construction.
Keywords:
distance-regular graph, arc-transitive graph
Mots-clés : automorphism, antipodal cover.
Mots-clés : automorphism, antipodal cover.
@article{SEMR_2013_10_a19,
author = {L. Yu. Tsiovkina},
title = {On automorphisms of a distance-regular graph with intersection array $\{27,24,1;1,8,27\}$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {689--698},
publisher = {mathdoc},
volume = {10},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a19/}
}
TY - JOUR
AU - L. Yu. Tsiovkina
TI - On automorphisms of a distance-regular graph with intersection array $\{27,24,1;1,8,27\}$
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2013
SP - 689
EP - 698
VL - 10
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a19/
LA - ru
ID - SEMR_2013_10_a19
ER -
L. Yu. Tsiovkina. On automorphisms of a distance-regular graph with intersection array $\{27,24,1;1,8,27\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 689-698. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a19/