On automorphisms of a distance-regular graph with intersection array $\{27,24,1;1,8,27\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 689-698

Voir la notice de l'article provenant de la source Math-Net.Ru

Prime divisors of orders of automorphisms and the fixed point subgraphs of automorphisms of prime orders are studied for a hypothetical distance-regular graph with intersection array $\{27,24,1;1,8,27\}$. It is shown, that there exists the unique (up to isomorphism) arc-transitive distance-regular graph with intersection array $\{27,24,1;1,8,27\}$. This graph is obtainable by the Cameron construction.
Keywords: distance-regular graph, arc-transitive graph
Mots-clés : automorphism, antipodal cover.
@article{SEMR_2013_10_a19,
     author = {L. Yu. Tsiovkina},
     title = {On automorphisms of a distance-regular graph with intersection array $\{27,24,1;1,8,27\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {689--698},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a19/}
}
TY  - JOUR
AU  - L. Yu. Tsiovkina
TI  - On automorphisms of a distance-regular graph with intersection array $\{27,24,1;1,8,27\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 689
EP  - 698
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a19/
LA  - ru
ID  - SEMR_2013_10_a19
ER  - 
%0 Journal Article
%A L. Yu. Tsiovkina
%T On automorphisms of a distance-regular graph with intersection array $\{27,24,1;1,8,27\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 689-698
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a19/
%G ru
%F SEMR_2013_10_a19
L. Yu. Tsiovkina. On automorphisms of a distance-regular graph with intersection array $\{27,24,1;1,8,27\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 689-698. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a19/