Tilings of $p$-ary cyclic groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 562-565
Voir la notice de l'article provenant de la source Math-Net.Ru
A tiling of a finite abelian group $G$ is a pair $(T , A)$ of subsets of $G$ such that every element $g \in G$ can be uniquely represented as $t+a$ with $t \in T$ , $a \in A$. In this paper we consider tilings of groups $\mathbb{Z}_{p^n}$ ($p$ is prime) and give a description of a recurrent scheme embracing all tilings of such groups. Furthermore we count their number.
Keywords:
tiling, finite abelian group, factor group.
Mots-clés : set's kernel
Mots-clés : set's kernel
@article{SEMR_2013_10_a17,
author = {D. K. Zhukov},
title = {Tilings of $p$-ary cyclic groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {562--565},
publisher = {mathdoc},
volume = {10},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a17/}
}
D. K. Zhukov. Tilings of $p$-ary cyclic groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 562-565. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a17/