Tilings of $p$-ary cyclic groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 562-565
Cet article a éte moissonné depuis la source Math-Net.Ru
A tiling of a finite abelian group $G$ is a pair $(T , A)$ of subsets of $G$ such that every element $g \in G$ can be uniquely represented as $t+a$ with $t \in T$ , $a \in A$. In this paper we consider tilings of groups $\mathbb{Z}_{p^n}$ ($p$ is prime) and give a description of a recurrent scheme embracing all tilings of such groups. Furthermore we count their number.
Keywords:
tiling, finite abelian group, factor group.
Mots-clés : set's kernel
Mots-clés : set's kernel
@article{SEMR_2013_10_a17,
author = {D. K. Zhukov},
title = {Tilings of $p$-ary cyclic groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {562--565},
year = {2013},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a17/}
}
D. K. Zhukov. Tilings of $p$-ary cyclic groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 562-565. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a17/
[1] G. Cohen, S. Litsyn, A. Vardy, G. Zemor, “Tilings of binary spaces”, SIAM J. Discrete Math., 9 (1996), 393–412 | DOI | MR | Zbl
[2] T. Etzion, A. Vardy, “On perfect codes and tilings: problems and solutions”, SIAM J. Discrete Math., 11 (1998), 205–223 | DOI | MR | Zbl
[3] M. Dinitz, “Full rank tilings of finite abelian groups”, SIAM J. Discrete Math., 20 (2006), 160–170 | DOI | MR | Zbl
[4] Sandor Szabo, Arthur D. Sands, Factoring groups into subsets, Taylor Francis Group, 2009 | MR
[5] Kenneth Ireland, Michael Rosen, A classical Introduction To Modern Number Theory, Springer-Verlag, New York, 1982 | MR