Periodic Shunkov's groups saturated by the direct products of an elementary abelian 2-groups and a simple groups $L_2 (2^m)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 558-561.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a periodic Shunkov's group containing an involution. It is proved that if every finite subgroup from $G$ of even order is contained in a subgroup, which is isomorphic to the direct product of an elementary abelian 2-group and a group $L_2 (2^m)$ for some $m \geq 2$, that $G \simeq L_2 (Q) \times V$, where $Q$ is some locally finite field of characteristic 2 and $V$ is a group of period 2.
Keywords: periodic Shunkov's group
Mots-clés : saturation.
@article{SEMR_2013_10_a16,
     author = {A. A. Duzh},
     title = {Periodic {Shunkov's} groups saturated by the direct products of an elementary abelian 2-groups and a simple groups  $L_2 (2^m)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {558--561},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a16/}
}
TY  - JOUR
AU  - A. A. Duzh
TI  - Periodic Shunkov's groups saturated by the direct products of an elementary abelian 2-groups and a simple groups  $L_2 (2^m)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 558
EP  - 561
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a16/
LA  - ru
ID  - SEMR_2013_10_a16
ER  - 
%0 Journal Article
%A A. A. Duzh
%T Periodic Shunkov's groups saturated by the direct products of an elementary abelian 2-groups and a simple groups  $L_2 (2^m)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 558-561
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a16/
%G ru
%F SEMR_2013_10_a16
A. A. Duzh. Periodic Shunkov's groups saturated by the direct products of an elementary abelian 2-groups and a simple groups  $L_2 (2^m)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 558-561. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a16/

[1] A. A. Duzh, A. A. Shlepkin, “O periodicheskoi gruppe Shunkova, nasyschennoi pryamymi proizvedeniyami konechnykh elementarnykh abelevykh 2-grupp i $L_2(2^n)$”, Trudy IMM UrO RAN, 17, no. 4, 2011, 83–87

[2] A. K. Shlepkin, “Sopryazhenno biprimitivno konechnye gruppy, soderzhaschie konechnye nerazreshimye podgruppy”, Sb. tez. 3-i mezhdunar. konf. po algebre (Krasnoyarsk, 1993), 363

[3] A. K. Shlepkin, “O sopryazhenno biprimitivno konechnykh gruppakh, nasyschennykh konechnymi prostymi podgruppami”, Algebra i logika, 37:2 (1998), 224–245 | MR | Zbl

[4] V. P. Shunkov, “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 11:4 (1972), 470–494