Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2013_10_a15, author = {Andrei V. Zavarnitsine}, title = {Subextensions for a permutation $\mathrm{PSL}_2(q)$-module}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {551--557}, publisher = {mathdoc}, volume = {10}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a15/} }
Andrei V. Zavarnitsine. Subextensions for a permutation $\mathrm{PSL}_2(q)$-module. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 551-557. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a15/
[1] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, 87, Springer-Verlag, Berlin–New York, 1982, 306 pp. | DOI | MR | Zbl
[2] V. P. Burichenko, “Extensions of abelian 2-groups by $\operatorname{L}_2(q)$ with irreducible action”, Algebra and Logic, 39:3 (2000), 160–183 | DOI | MR | Zbl
[3] V. P. Burichenko, On some cohomologies of groups $\operatorname{L}_n(q)$, Abstract, Gomel, 2009, 1 pp.
[4] J. D. Dixon, B. Mortimer, Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996, 346 pp. | DOI | MR | Zbl
[5] K. Erdmann, “Principal blocks of groups with dihedral Sylow $2$-subgroups”, Comm. Algebra, 5:7 (1977), 665–694 | DOI | MR | Zbl
[6] K. W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Mathematics, 143, Springer-Verlag, Berlin–New York, 1970, 275 pp. | MR | Zbl
[7] B. Huppert, Endliche Gruppen, v. I, Die Grundlehren der Mathematischen Wissenschaften, 134, Springer-Verlag, Berlin-New York, 1967, 793 pp. | DOI | MR | Zbl
[8] N. V. Maslova, D. O. Revin, On composition factors of a finite group that is minimal with respect to the prime spectrum, in preparation
[9] T. Weigel, The universal $\ell$-Frattini cover of $\operatorname{PSL}_2(q)$, Preprint
[10] Ch. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994, 450 pp. | MR | Zbl