Subextensions for a permutation $\mathrm{PSL}_2(q)$-module
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 551-557.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using cohomological methods, we solve the problem of embedding $\mathrm{SL}_2(q)$ into the permutation wreath product for the permutation $\mathrm{PSL}_2(q)$-module in characteristic $2$ that arises from the action on the projective line. We also prove some useful auxiliary results.
Keywords: finite simple groups, group cohomology.
Mots-clés : permutation module
@article{SEMR_2013_10_a15,
     author = {Andrei V. Zavarnitsine},
     title = {Subextensions for a permutation $\mathrm{PSL}_2(q)$-module},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {551--557},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a15/}
}
TY  - JOUR
AU  - Andrei V. Zavarnitsine
TI  - Subextensions for a permutation $\mathrm{PSL}_2(q)$-module
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 551
EP  - 557
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a15/
LA  - en
ID  - SEMR_2013_10_a15
ER  - 
%0 Journal Article
%A Andrei V. Zavarnitsine
%T Subextensions for a permutation $\mathrm{PSL}_2(q)$-module
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 551-557
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a15/
%G en
%F SEMR_2013_10_a15
Andrei V. Zavarnitsine. Subextensions for a permutation $\mathrm{PSL}_2(q)$-module. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 551-557. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a15/

[1] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, 87, Springer-Verlag, Berlin–New York, 1982, 306 pp. | DOI | MR | Zbl

[2] V. P. Burichenko, “Extensions of abelian 2-groups by $\operatorname{L}_2(q)$ with irreducible action”, Algebra and Logic, 39:3 (2000), 160–183 | DOI | MR | Zbl

[3] V. P. Burichenko, On some cohomologies of groups $\operatorname{L}_n(q)$, Abstract, Gomel, 2009, 1 pp.

[4] J. D. Dixon, B. Mortimer, Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New York, 1996, 346 pp. | DOI | MR | Zbl

[5] K. Erdmann, “Principal blocks of groups with dihedral Sylow $2$-subgroups”, Comm. Algebra, 5:7 (1977), 665–694 | DOI | MR | Zbl

[6] K. W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Mathematics, 143, Springer-Verlag, Berlin–New York, 1970, 275 pp. | MR | Zbl

[7] B. Huppert, Endliche Gruppen, v. I, Die Grundlehren der Mathematischen Wissenschaften, 134, Springer-Verlag, Berlin-New York, 1967, 793 pp. | DOI | MR | Zbl

[8] N. V. Maslova, D. O. Revin, On composition factors of a finite group that is minimal with respect to the prime spectrum, in preparation

[9] T. Weigel, The universal $\ell$-Frattini cover of $\operatorname{PSL}_2(q)$, Preprint

[10] Ch. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994, 450 pp. | MR | Zbl