On hereditarily pure associative algebras over Dedekind rings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 475-490 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the description hereditary pure associative algebras over Dedekind rings is investigated. In particular, nilalgebras, idempotent algebras and commutative algebras with such property are characterized.
Keywords: associative algebra, Dedekind ring, hereditary pure associative algebra.
@article{SEMR_2013_10_a13,
     author = {L. M. Martynov},
     title = {On hereditarily pure associative algebras over {Dedekind} rings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {475--490},
     year = {2013},
     volume = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a13/}
}
TY  - JOUR
AU  - L. M. Martynov
TI  - On hereditarily pure associative algebras over Dedekind rings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 475
EP  - 490
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a13/
LA  - ru
ID  - SEMR_2013_10_a13
ER  - 
%0 Journal Article
%A L. M. Martynov
%T On hereditarily pure associative algebras over Dedekind rings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 475-490
%V 10
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a13/
%G ru
%F SEMR_2013_10_a13
L. M. Martynov. On hereditarily pure associative algebras over Dedekind rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 475-490. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a13/

[1] L. M. Martynov, “O ponyatiyakh primarnosti, polnoty, redutsirovannosti i chistoty dlya proizvolnykh algebr”, Universalnaya algebra i eë prilozheniya, Trudy mezhdunarodnogo seminara (Volgograd, 6–11 sentyabrya 1999), Peremena, Volgograd, 2000, 179–190

[2] A. I. Maltsev, “Ob umnozhenii klassov algebraicheskikh sistem”, Sib. mat. zh., 8:2 (1967), 346–365

[3] L. N. Shevrin, L. M. Martynov, “O dostizhimykh klassakh algebr”, Sib. mat. zhurn., 12:6 (1971), 1363–1381 | MR | Zbl

[4] L. N. Shevrin, L. M. Martynov, “Attainability and solvability for classes of algebras”, Semigroups: Structure and universal algebraic problems (Szeged, Hungary, 1981), Colloq. Math. Soc. J. Bolyai, 39, North-Holland, Amsterdam e. a., 1985, 397–459 | MR

[5] L. M. Martynov, “O probleme spektrov razreshimosti dlya mnogoobrazii algebr”, Algebra i logika, 29:2 (1990), 162–178 | MR | Zbl

[6] L. M. Martynov, “Ob odnom radikale algebr so svoistvom transverbalnosti po minimalnym mnogoobraziyam”, Vest. Omsk. un-ta, 2004, no. 3, 19–21

[7] A. G. Kurosh, “Radikaly v teorii grupp”, Sib. mat. zhurn., 3:6 (1962), 912–931 | MR | Zbl

[8] A. I. Kornev, “O modulyakh s chistymi podmodulyami”, Universalnaya algebra i eë prilozheniya, Trudy mezhdunarodnogo seminara (Volgograd, 6–11 sentyabrya 1999), Peremena, Volgograd, 2000, 144–152

[9] A. I. Kornev, “Prostye po chistote moduli redutsirovannykh mnogoobrazii modulei nad kommutativnymi koltsami”, Vest. Omsk. un-ta, 2000, no. 4, 13–15 | MR | Zbl

[10] A. A. Tuganbaev, “Primitively pure submodules and primitively divisible modules”, Journal of Mathematical Sciences, 110:3 (2002), 2746–2754 | DOI | MR | Zbl

[11] O. V. Knyazev, “O chistykh algebrakh s vydelennym elementom”, Matematika i informatika: nauka i obrazovanie, 1, Izd-vo OmGPU, Omsk, 2001, 10–13

[12] O. V. Knyazev, “O chistykh algebrakh”, Vest. Omsk. un-ta, 2001, no. 3, 18–20 | Zbl

[13] O. V. Knyazev, “Ob absolyutno chistykh algebrakh s vydelennym elementom”, Matematika i informatika: nauka i obrazovanie, 2, Izd-vo OmGPU, Omsk, 2002, 23–25

[14] O. V. Knyazev, “Nasledstvenno chistye kommutativnye monoidy”, Matematika i informatika: nauka i obrazovanie, 3, Izd-vo OmGPU, Omsk, 2003, 16–19

[15] O. V. Knyazev, “Nasledstvenno chistye monoidy”, Sib. elektron. matem. izv., 2 (2005), 83–87 | MR | Zbl

[16] O. V. Knyazev, “Polugruppy s nasledstvenno chistymi podpolugruppami”, Izv. Ural. gos. un-ta (Matematika i mekhanika), 2005, no. 8 (38), 69–79 | MR | Zbl

[17] O. V. Knyazev, “Prostye po chistote vpolne regulyarnye polugruppy”, Vest. Omsk. un-ta, 2006, no. 4, 17–20

[18] O. V. Knyazev, “O chistykh tsiklicheskikh podgruppakh grupp”, Matematika i informatika: nauka i obrazovanie, 5, Izd-vo OmGPU, Omsk, 2006, 24–26

[19] I. V. Znaeva, “Nasledstvenno chistye algebry Li”, Matematika i informatika: nauka i obrazovanie, 6, Izd-vo OmGPU, Omsk, 2007, 12–15

[20] L. M. Martynov, “Nasledstvenno chistye assotsiativnye koltsa”, Matematika i informatika: nauka i obrazovanie, 9, Izd-vo OmGPU, Omsk, 2010, 25–35

[21] L. M. Martynov, “Nasledstvenno chistye assotsiativnye algebry nad dedekindovym koltsom, maksimalnye idealy kotorogo imeyut konechnye indeksy”, Algebra i logika, 50:6 (2011), 781–801 | MR

[22] O. Zarisskii, P. Samyuel, Kommutativnaya algebra, v. 1, IL, M., 1963 | Zbl

[23] N. Dzhekobson, Teoriya kolets, IIL, M., 1961

[24] T. R. Sundararaman, “Precomplete varieties of $R$-algebras”, Alg. Univers., 27:2 (1974), 243–256 | MR

[25] V. A. Artamonov, “Reshetki mnogoobrazii lineinykh algebr”, Uspekhi mat. nauk., 33:2 (1978), 135–167 | MR | Zbl

[26] L. M. Martynov, “O primarnykh i redutsirovannykh mnogoobraziyakh monoassotsiativnykh algebr”, Sib. mat. zh., 42:1 (2001), 103–112 | MR | Zbl

[27] L. M. Martynov, “Nasledstvenno chistye assotsiativnye kommutativnye algebry nad dedekindovymi koltsami”, Maltsevskie chteniya, Mezhdunarodnaya konferentsiya, posvyaschennaya 60-letiyu so dnya rozhdeniya S. S. Goncharova, Tezisy dokladov (11–14 oktyabrya 2011 g.), Novosibirsk, 2011, 116