On the commutation graph of cyclic $TI$-subgroup in a symmetric group
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 436-442
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the commutation graph $\Gamma _G(A)$ of cyclic $TI$-subgroup A of order 4 in a finite group $G$ with quasisimple generalized Fitting subgroup $F^*(G)$. It is proved that, if $F^*(G)$ is a covering group for $A_n$, then the graph $\Gamma _G(A)$ is edge-regular but not coedge-regular graph.
Keywords:
finite group, cyclic $TI$-subgroup, commutation graph.
@article{SEMR_2013_10_a11,
author = {N. D. Zyulyarkina},
title = {On the commutation graph of cyclic $TI$-subgroup in a symmetric group},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {436--442},
year = {2013},
volume = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a11/}
}
N. D. Zyulyarkina. On the commutation graph of cyclic $TI$-subgroup in a symmetric group. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 436-442. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a11/
[1] N. D. Zyulyarkina, “Tsiklicheskie $TI$-podgruppy poryadka 4 v klassicheskikh gruppakh Shevalle nechetnoi kharakteristiki”, Voprosy algebry i logiki, Trudy IM SO RAN, 1996, 89–110 | Zbl
[2] N. D. Zyulyarkina, “O grafe kommutirovaniya tsiklicheskikh TI-podgrupp v lineinykh gruppakh”, Trudy IMM UrO RAN, 17, no. 4, 2011, 114–120
[3] N. D. Zyulyarkina, “O grafe kommutirovaniya tsiklicheskikh TI-podgrupp v ortogonalnykh gruppakh”, Sibirskie elektronnye matematicheskie izvestiya, 10 (2013), 180–199 | MR
[4] M. Aschbacher, Finite group theory, Cambridge University Press, 1986 | MR | Zbl