On $p$-complements of finite groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 414-417.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a finite group $G$ is called a $p$-complement for a prime $p$, if the order of $H$ is not divided by $p$ and the index $|G:H|$ is a power of $p$. We give examples of a finite group that possesses two nonisomorphic $p$-complements and of a finite group in which all $p$-complements are isomorphic but not conjugate in the automorphism group.
Keywords: finite group
Mots-clés : $p$-complement.
@article{SEMR_2013_10_a10,
     author = {A. A. Buturlakin and D. O. Revin},
     title = {On $p$-complements of finite groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {414--417},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a10/}
}
TY  - JOUR
AU  - A. A. Buturlakin
AU  - D. O. Revin
TI  - On $p$-complements of finite groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 414
EP  - 417
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a10/
LA  - en
ID  - SEMR_2013_10_a10
ER  - 
%0 Journal Article
%A A. A. Buturlakin
%A D. O. Revin
%T On $p$-complements of finite groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 414-417
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a10/
%G en
%F SEMR_2013_10_a10
A. A. Buturlakin; D. O. Revin. On $p$-complements of finite groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 414-417. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a10/

[1] P. Hall, “A note on soluble groups”, J. London Math. Soc., 3 (1928), 98–105 | DOI | MR | Zbl

[2] P. Hall, “A characteristic property of soluble groups”, J. London Math. Soc., 12 (1937), 198–200 | DOI | MR

[3] S. A. Chunikhin, “On soluble groups”, Isv. NIIMM Tom. Univ., 2 (1938), 220–223 (in Russian) | Zbl

[4] I. M. Isaacs, Finite group theory, AMS, Providence, RI, 2008 | MR

[5] Z. Arad, E. Fisman, “On finite factorizable groups”, J. Algebra, 86 (1984), 522–548 | DOI | MR | Zbl

[6] Z. Arad, M. B. Ward, “New criteria for the solvability of finite groups”, J. Algebra, 77 (1982), 234–246 | DOI | MR | Zbl