Wolstenholme's theorem for binomial coefficients
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 460-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the numerator of $\sum_{i=k}^{p-1}\binom{i}{k}^{-1}$ is divisible by $p^2$ for infinitely many primes $p$ if and only if $k=1$.
Keywords: Wolstenholme's theorem.
Mots-clés : binomial coefficient
@article{SEMR_2012_9_a8,
     author = {A. S. Dzhumadil'daev and D. A. Yeliussizov},
     title = {Wolstenholme's theorem for binomial coefficients},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {460--463},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a8/}
}
TY  - JOUR
AU  - A. S. Dzhumadil'daev
AU  - D. A. Yeliussizov
TI  - Wolstenholme's theorem for binomial coefficients
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 460
EP  - 463
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a8/
LA  - en
ID  - SEMR_2012_9_a8
ER  - 
%0 Journal Article
%A A. S. Dzhumadil'daev
%A D. A. Yeliussizov
%T Wolstenholme's theorem for binomial coefficients
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 460-463
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a8/
%G en
%F SEMR_2012_9_a8
A. S. Dzhumadil'daev; D. A. Yeliussizov. Wolstenholme's theorem for binomial coefficients. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 460-463. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a8/

[1] J. Wolstenholme, “On certain properties of prime numbers”, Quaterly J. Pure and Applied Math., 5 (1862), 35–39