Wolstenholme's theorem for binomial coefficients
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 460-463
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the numerator of $\sum_{i=k}^{p-1}\binom{i}{k}^{-1}$ is divisible by $p^2$ for infinitely many primes $p$ if and only if $k=1$.
Keywords:
Wolstenholme's theorem.
Mots-clés : binomial coefficient
Mots-clés : binomial coefficient
@article{SEMR_2012_9_a8,
author = {A. S. Dzhumadil'daev and D. A. Yeliussizov},
title = {Wolstenholme's theorem for binomial coefficients},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {460--463},
publisher = {mathdoc},
volume = {9},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a8/}
}
A. S. Dzhumadil'daev; D. A. Yeliussizov. Wolstenholme's theorem for binomial coefficients. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 460-463. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a8/