On Neumann's lemma and Sylvester sequence
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 439-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

We got another proof of famous B. Neumann’s result about groups covered by finite many cosets.
Keywords: coset, Neumann’s lemma, Sylvester sequence.
@article{SEMR_2012_9_a7,
     author = {A. A. Shlepkin},
     title = {On {Neumann's} lemma and {Sylvester} sequence},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {439--444},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a7/}
}
TY  - JOUR
AU  - A. A. Shlepkin
TI  - On Neumann's lemma and Sylvester sequence
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 439
EP  - 444
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a7/
LA  - ru
ID  - SEMR_2012_9_a7
ER  - 
%0 Journal Article
%A A. A. Shlepkin
%T On Neumann's lemma and Sylvester sequence
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 439-444
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a7/
%G ru
%F SEMR_2012_9_a7
A. A. Shlepkin. On Neumann's lemma and Sylvester sequence. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 439-444. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a7/

[1] B.H. Neumann, “Groups covered by permutable subsets”, J. London Math. Soc., 29 (1954), 236–248 | DOI | MR | Zbl

[2] B.H. Neumann, “Groups covered by finitely many cosets”, Publ. Math. Debrecen, 3 (1954), 227–242 | MR | Zbl

[3] V.V. Belyaev, “Gruppy s pochti regulyarnoi involyutsiei”, Algebra i logika, 5 (1987), 531–535

[4] V.P. Shunkov, “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 4 (1972), 470–494