On automorphisms of a distance-regular graph with intersection array $\{35,32,1;1,2,35\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 285-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

Prime divisors of the orders of automorphisms and their fixed point subgraphs are studied for a hypothetical distance-regular graph with intersection array $\{35,32,1;1,2,35\}$. It is proved that this graph is not arc-transitive.
Keywords: distance-regular graph
Mots-clés : automorphism.
@article{SEMR_2012_9_a4,
     author = {L. Yu. Tsiovkina},
     title = {On automorphisms of a distance-regular graph with intersection array $\{35,32,1;1,2,35\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {285--293},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a4/}
}
TY  - JOUR
AU  - L. Yu. Tsiovkina
TI  - On automorphisms of a distance-regular graph with intersection array $\{35,32,1;1,2,35\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 285
EP  - 293
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a4/
LA  - ru
ID  - SEMR_2012_9_a4
ER  - 
%0 Journal Article
%A L. Yu. Tsiovkina
%T On automorphisms of a distance-regular graph with intersection array $\{35,32,1;1,2,35\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 285-293
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a4/
%G ru
%F SEMR_2012_9_a4
L. Yu. Tsiovkina. On automorphisms of a distance-regular graph with intersection array $\{35,32,1;1,2,35\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 285-293. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a4/

[1] Burichenko V.P., Makhnev A.A., “O vpolne regulyarnykh lokalno tsiklicheskikh grafakh”, Sovremennye problemy matematiki, Tezisy 42 Vserossiiskoi molodezhnoi konferentsii, IMM UrO RAN, Ekaterinburg, 2011, 181–183

[2] Makhnev A.A., Paduchikh D.V., “Ob avtomorfizmakh distantsionno-regulyarnogo grafa s massivom peresechenii $ \{24,21,3;1,3,18\}$”, Doklady akademii nauk, 441:1 (2011), 14–18 | Zbl

[3] Cameron P.J., Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[4] Cameron P.J., van Lint J.H., Graphs, Codes and Designs, London Math. Soc. Student Texts, 22, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[5] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Doklady akademii nauk, 432:5 (2010), 583–587 | MR | Zbl

[6] Godsil C.D., Liebler R.A., Praeger C.E., “Antipodal distance transitive covers of complete graphs”, Europ. J. Comb., 19:4 (1998), 455-478 | DOI | MR | Zbl