Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2012_9_a39, author = {V. P. Golubyatnikov}, title = {S\"uss's lemma and inverse problems}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {{\CYRA}.16--{\CYRA}.19}, publisher = {mathdoc}, volume = {9}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a39/} }
V. P. Golubyatnikov. S\"uss's lemma and inverse problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. А.16-А.19. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a39/
[1] Aleksandrov A.D., “K teorii smeshannykh ob'emov vypuklykh tel. II”, Mat. sb., 2:6 (1937), 1205–1238 ; Александров А.Д., Геометрия и приложения, Наука, Новосибирск, 2006 (Избранные труды, Т. 1. С. 59–96) | MR | Zbl
[2] Gardner R.J., Geometric tomography, 2d ed., Cambridge University Press, Cambridge, 2006 | MR | Zbl
[3] Golubyatnikov V.P., “Ob odnoznachnoi vosstanovimosti vypuklykh i obozrimykh kompaktov po ikh proektsiyam”, Mat. sb., 182:5 (1991), 611–621 | Zbl
[4] Golubyatnikov V.P., “Ob odnoznachnoi vosstanovimosti vypuklykh kompaktov po ikh proektsiyam. Sluchai kompleksnykh prostranstv”, Sib. mat. zhurn., 40:4 (1999), 805–810 | MR | Zbl
[5] Golubyatnikov V.P., Uniqueness questions in reconstruction of multidimensional objects from tomography-type projection data, VSP, Utrecht, 2000
[6] Golubyatnikov V.P., Rovenskii V.Yu., “Nekotorye obobscheniya klassa $k$-vypuklykh tel”, Sib. mat. zhurn., 50:5 (2009), 1037–1049 | MR | Zbl
[7] Petty C.M., McKinney J.R., “Convex bodies with circumscribing boxes of constant width”, Port. Math., 44:4 (1987), 447–455 | MR | Zbl
[8] Süss W., “Zusammenensetzung von Eiköpern und homotetische Eiflächen”, Tôhoku Math. J., 35 (1932), 47–50
[9] Toponogov V.A., “Izoperimetricheskoe neravenstvo dlya poverkhnostei, gaussova krivizna kotorykh ogranichena snizu”, Sib. mat. zhurn., 10 (1969), 144–157 | MR | Zbl