S\"uss's lemma and inverse problems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. А.16-А.19.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SEMR_2012_9_a39,
     author = {V. P. Golubyatnikov},
     title = {S\"uss's lemma and inverse problems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {{\CYRA}.16--{\CYRA}.19},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a39/}
}
TY  - JOUR
AU  - V. P. Golubyatnikov
TI  - S\"uss's lemma and inverse problems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - А.16
EP  - А.19
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a39/
LA  - ru
ID  - SEMR_2012_9_a39
ER  - 
%0 Journal Article
%A V. P. Golubyatnikov
%T S\"uss's lemma and inverse problems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P А.16-А.19
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a39/
%G ru
%F SEMR_2012_9_a39
V. P. Golubyatnikov. S\"uss's lemma and inverse problems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. А.16-А.19. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a39/

[1] Aleksandrov A.D., “K teorii smeshannykh ob'emov vypuklykh tel. II”, Mat. sb., 2:6 (1937), 1205–1238 ; Александров А.Д., Геометрия и приложения, Наука, Новосибирск, 2006 (Избранные труды, Т. 1. С. 59–96) | MR | Zbl

[2] Gardner R.J., Geometric tomography, 2d ed., Cambridge University Press, Cambridge, 2006 | MR | Zbl

[3] Golubyatnikov V.P., “Ob odnoznachnoi vosstanovimosti vypuklykh i obozrimykh kompaktov po ikh proektsiyam”, Mat. sb., 182:5 (1991), 611–621 | Zbl

[4] Golubyatnikov V.P., “Ob odnoznachnoi vosstanovimosti vypuklykh kompaktov po ikh proektsiyam. Sluchai kompleksnykh prostranstv”, Sib. mat. zhurn., 40:4 (1999), 805–810 | MR | Zbl

[5] Golubyatnikov V.P., Uniqueness questions in reconstruction of multidimensional objects from tomography-type projection data, VSP, Utrecht, 2000

[6] Golubyatnikov V.P., Rovenskii V.Yu., “Nekotorye obobscheniya klassa $k$-vypuklykh tel”, Sib. mat. zhurn., 50:5 (2009), 1037–1049 | MR | Zbl

[7] Petty C.M., McKinney J.R., “Convex bodies with circumscribing boxes of constant width”, Port. Math., 44:4 (1987), 447–455 | MR | Zbl

[8] Süss W., “Zusammenensetzung von Eiköpern und homotetische Eiflächen”, Tôhoku Math. J., 35 (1932), 47–50

[9] Toponogov V.A., “Izoperimetricheskoe neravenstvo dlya poverkhnostei, gaussova krivizna kotorykh ogranichena snizu”, Sib. mat. zhurn., 10 (1969), 144–157 | MR | Zbl