New classes of generating functions for generalized Bessel functions with satisfy the ordinary differential equation of the $m$-order
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 561-567

Voir la notice de l'article provenant de la source Math-Net.Ru

For generalized Bessel functions which satisfy the ordinary differential equation of the $m$-order of special type new classes of generating functions (associated with Stirling numbers of the second kind) are derived. Relevant connections of this new formulas with those given in earlier works on the subject are also indicated.
Keywords: generalized Bessel functions, generating functions, Stirling numbers.
@article{SEMR_2012_9_a35,
     author = {M. D. Khriptun},
     title = {New classes of generating functions for generalized {Bessel} functions with satisfy the ordinary differential equation of the $m$-order},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {561--567},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a35/}
}
TY  - JOUR
AU  - M. D. Khriptun
TI  - New classes of generating functions for generalized Bessel functions with satisfy the ordinary differential equation of the $m$-order
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 561
EP  - 567
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a35/
LA  - ru
ID  - SEMR_2012_9_a35
ER  - 
%0 Journal Article
%A M. D. Khriptun
%T New classes of generating functions for generalized Bessel functions with satisfy the ordinary differential equation of the $m$-order
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 561-567
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a35/
%G ru
%F SEMR_2012_9_a35
M. D. Khriptun. New classes of generating functions for generalized Bessel functions with satisfy the ordinary differential equation of the $m$-order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 561-567. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a35/