Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2012_9_a35, author = {M. D. Khriptun}, title = {New classes of generating functions for generalized {Bessel} functions with satisfy the ordinary differential equation of the $m$-order}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {561--567}, publisher = {mathdoc}, volume = {9}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a35/} }
TY - JOUR AU - M. D. Khriptun TI - New classes of generating functions for generalized Bessel functions with satisfy the ordinary differential equation of the $m$-order JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2012 SP - 561 EP - 567 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a35/ LA - ru ID - SEMR_2012_9_a35 ER -
%0 Journal Article %A M. D. Khriptun %T New classes of generating functions for generalized Bessel functions with satisfy the ordinary differential equation of the $m$-order %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2012 %P 561-567 %V 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a35/ %G ru %F SEMR_2012_9_a35
M. D. Khriptun. New classes of generating functions for generalized Bessel functions with satisfy the ordinary differential equation of the $m$-order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 561-567. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a35/
[1] Mathai A. M., Saxena R. K., Generalized hypergeometric functions with applications in statistics and physical sciences, Springer-Verlag, Berlin–Heidelberg–New-York, 1973 | MR
[2] Srivastava H. M., Kashyap B. R. K., Special functions in Queueing Theory and related Stochastic processes, Academic Press, New-York, 1982 | MR
[3] Riordan J., Combinatorial Identities, Wiley Tracts of Probability and Statistics, John Wiley and Sons, New-York–London–Sydney, 1968 | MR | Zbl
[4] Singhal J. P., Srivastava H. M., “A class of bilateral generating functions for certain classical polynomials”, Pacific J. Math., 42 (1972), 755–762 | DOI | MR
[5] Srivastava H. M., “Some families of generating functions associated with the Stirling numbers of the second kind”, J. Math Anal. Appl., 251 (2000), 752–769 | DOI | MR | Zbl
[6] Khriptun M. D., “Teoremy umnozheniya dlya reshenii obobschennogo differentsialnogo uravneniya Besselya $m$-go poryadka”, Dif. uravneniya, 11:2 (1975), 287–293 | Zbl
[7] Luchak G., “The solution of the single-channel queueing equations characterized by a time-dependent Poisson distributed arrival rate and general class of holding times”, Oper. Res., 4 (1956), 711–732 | DOI | MR
[8] Luchak G., “The distribution of the time required to reduce to some preassigned level a simple channel queue characterized by a time dependent Poisson-distributed arrival rate and a general class of holding times”, Operations Research, 5 (1957), 205–209 | DOI | MR
[9] Luchak G., “The continuous time solution of the equations of the simple channel queue with a general class of service-time distributions by the method of generating functions”, Journal Roy. Statist. Soc. B, 20 (1958), 176–181 | MR | Zbl
[10] Watson G. N., A Treatise of the Theory of Bessel Functions, Second Edition, Cambridge Univ. Press, Cambridge– London–New-York, 1944 | MR | Zbl