Conditions for factorable matrices to be hyponormal and dominant
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 261-265
Voir la notice de l'article provenant de la source Math-Net.Ru
Sufficient conditions are given for a lower triangular factorable matrix $M$, acting as a bounded linear operator on $\ell^2$, to be hyponormal. Necessary conditions are given for $M$ to be a dominant operator on $\ell^2$. The results are then applied to several examples, including the H-J Cesàro operators, the q-Cesàro operators and other weighted mean matrices, and some Toeplitz matrices.
Keywords:
hyponormal operator, dominant operator, weighted mean matrix.
Mots-clés : factorable matrix
Mots-clés : factorable matrix
@article{SEMR_2012_9_a33,
author = {H. C. Rhaly and jr. and B. E. Rhoades},
title = {Conditions for factorable matrices to be hyponormal and dominant},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {261--265},
publisher = {mathdoc},
volume = {9},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a33/}
}
TY - JOUR AU - H. C. Rhaly AU - jr. AU - B. E. Rhoades TI - Conditions for factorable matrices to be hyponormal and dominant JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2012 SP - 261 EP - 265 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a33/ LA - en ID - SEMR_2012_9_a33 ER -
H. C. Rhaly; jr.; B. E. Rhoades. Conditions for factorable matrices to be hyponormal and dominant. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 261-265. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a33/