Conditions for factorable matrices to be hyponormal and dominant
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 261-265

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions are given for a lower triangular factorable matrix $M$, acting as a bounded linear operator on $\ell^2$, to be hyponormal. Necessary conditions are given for $M$ to be a dominant operator on $\ell^2$. The results are then applied to several examples, including the H-J Cesàro operators, the q-Cesàro operators and other weighted mean matrices, and some Toeplitz matrices.
Keywords: hyponormal operator, dominant operator, weighted mean matrix.
Mots-clés : factorable matrix
@article{SEMR_2012_9_a33,
     author = {H. C. Rhaly and jr. and B. E. Rhoades},
     title = {Conditions for factorable matrices to be hyponormal and dominant},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {261--265},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a33/}
}
TY  - JOUR
AU  - H. C. Rhaly
AU  - jr.
AU  - B. E. Rhoades
TI  - Conditions for factorable matrices to be hyponormal and dominant
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 261
EP  - 265
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a33/
LA  - en
ID  - SEMR_2012_9_a33
ER  - 
%0 Journal Article
%A H. C. Rhaly
%A jr.
%A B. E. Rhoades
%T Conditions for factorable matrices to be hyponormal and dominant
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 261-265
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a33/
%G en
%F SEMR_2012_9_a33
H. C. Rhaly; jr.; B. E. Rhoades. Conditions for factorable matrices to be hyponormal and dominant. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 261-265. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a33/