On solvability of one elliptic equation in a half-space
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 618-638.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we consider the Dirichlet problem for one elliptic equation with a parameter in a half-space. We establish solvability of the boundary value problem in the Sobolev space $W^{4l}_p$ under restrictions on $p$.
Mots-clés : elliptic equation
Keywords: boundary value problem, Sobolev space.
@article{SEMR_2012_9_a32,
     author = {L. N. Bondar},
     title = {On solvability of one elliptic equation in a half-space},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {618--638},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a32/}
}
TY  - JOUR
AU  - L. N. Bondar
TI  - On solvability of one elliptic equation in a half-space
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 618
EP  - 638
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a32/
LA  - ru
ID  - SEMR_2012_9_a32
ER  - 
%0 Journal Article
%A L. N. Bondar
%T On solvability of one elliptic equation in a half-space
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 618-638
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a32/
%G ru
%F SEMR_2012_9_a32
L. N. Bondar. On solvability of one elliptic equation in a half-space. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 618-638. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a32/

[1] L. N. Bondar, “O razreshimosti kraevoi zadachi dlya odnogo ellipticheskogo uravneniya s mladshimi chlenami”, Analiticheskie i chislennye metody modelirovaniya estestvennonauchnykh i sotsialnykh problem, Sbornik statei VI Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, Privolzhskii Dom znanii, Penza, 2011, 27–29

[2] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988

[3] G. V. Demidenko, “O korrektnoi razreshimosti kraevykh zadach v poluprostranstve dlya kvaziellipticheskikh uravnenii”, Sib. mat. zhurn., 29:4 (1988), 54–67 | MR | Zbl

[4] G. V. Demidenko, “Integralnye operatory, opredelyaemye kvaziellipticheskimi uravneniyami, II”, Sib. mat. zhurn., 35:1 (1994), 41–65 | MR | Zbl

[5] S. V. Uspenskii, “O predstavlenii funktsii, opredelyaemykh odnim klassom gipoellipticheskikh operatorov”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR, 117, 1972, 292–299 | MR

[6] G. V. Demidenko, S. V. Uspenskii, Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR | Zbl

[7] P. I. Lizorkin, “Obobschennoe liuvillevskoe differentsirovanie i metod multiplikatorov v teorii vlozhenii klassov differentsiruemykh funktsii”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR, 105, 1969, 89–167 | MR | Zbl