Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2012_9_a31, author = {T. V. Bugueva}, title = {Determining of the parameters of an elastic isotropic medium in a infinite cylinder}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {568--617}, publisher = {mathdoc}, volume = {9}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a31/} }
TY - JOUR AU - T. V. Bugueva TI - Determining of the parameters of an elastic isotropic medium in a infinite cylinder JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2012 SP - 568 EP - 617 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a31/ LA - ru ID - SEMR_2012_9_a31 ER -
T. V. Bugueva. Determining of the parameters of an elastic isotropic medium in a infinite cylinder. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 568-617. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a31/
[1] T. V. Bugueva, “Determining of density function in the multi-dimensional inverse problem of isotropic elasticity in a sphere”, Journal of Inverse and Ill-Posed Problems, 6:3 (1998), 173–203 | MR | Zbl
[2] T. V. Bugueva, “Multidimensional inverse problem for isotropic elasticity problem in a sphere”, Journal of Inverse and Ill-Posed Problems, 15:9 (2007), 893–934 | MR
[3] V. G. Romanov, Inverse Problems of Mathematical Physics, VNU Sciences Press, Utrecht, 1987 | MR
[4] T. V. Bugueva, “A linearized inverse problem for the wave equation in a sphere”, Journal of Inverse and Ill-Posed Problems, 4:3 (1996), 171–189 | MR | Zbl