Determining of the parameters of an elastic isotropic medium in a infinite cylinder
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 568-617
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider an inverse problem for a system of an elastic isotropic equations in a cylinder infinite with respect to the variable $z$. The linearized problem of identification of three characteristics of elastic isotropic medium is investigated. It is supposed that the medium density $\rho(r,\theta,\varphi)$, the propagation velocities of longitudinal $c(r,\theta,\varphi)$ and transverse $a(r,\theta,\varphi)$ waves can be represented as $\rho(r,\theta,\varphi)\!=\!\rho_{0}+\rho_{1}(r,\theta,\!\varphi)$, $a^{2}(r,\theta,\varphi)=a_{0}^{2}+a_{1}(r,\theta,\varphi)$, $c^{2}(r,\theta,\varphi)=c_{0}^{2}+c_{1}(r,\theta,\varphi)$, where $\rho_{0}$, $a_{0}^{2}$, $c_{0}^{2}$ are some unknown constants, and unknown functions $\rho_{1}(r,\theta,\varphi)$, $a_{1}(r,\theta,\varphi)$, $c_{1}(r,\theta,\varphi)$ are small in comparison with the constants $\rho_{0}$, $a_{0}^{2}$ и $c_{0}^{2}$, correspondingly. The estimates of conditional stability of the inverse problem solution are obtained.
Keywords:
inverse problems, isotropic elasticity, conditional stability estimate.
@article{SEMR_2012_9_a31,
author = {T. V. Bugueva},
title = {Determining of the parameters of an elastic isotropic medium in a infinite cylinder},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {568--617},
year = {2012},
volume = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a31/}
}
T. V. Bugueva. Determining of the parameters of an elastic isotropic medium in a infinite cylinder. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 568-617. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a31/
[1] T. V. Bugueva, “Determining of density function in the multi-dimensional inverse problem of isotropic elasticity in a sphere”, Journal of Inverse and Ill-Posed Problems, 6:3 (1998), 173–203 | MR | Zbl
[2] T. V. Bugueva, “Multidimensional inverse problem for isotropic elasticity problem in a sphere”, Journal of Inverse and Ill-Posed Problems, 15:9 (2007), 893–934 | MR
[3] V. G. Romanov, Inverse Problems of Mathematical Physics, VNU Sciences Press, Utrecht, 1987 | MR
[4] T. V. Bugueva, “A linearized inverse problem for the wave equation in a sphere”, Journal of Inverse and Ill-Posed Problems, 4:3 (1996), 171–189 | MR | Zbl