Gasdynamics equations submodels hierarchy in case of state equation with separated density
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 306-328
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the gasdynamics equations with the state equation of the separated density. The optimal system of subalgebras for 12 dimentional Lie algebra admitted by the gasdynamics equations is constructed. For each subalgebra from the optimal system of subalgebras a submodel (invariant, partially invariant, differential invariant) can be constructed. The solutions of the submodel can be particular solutions of another submodels. In this case the submodel subalgebra include the subalgebra of another submodel, that is overalgebra. We consider submodels hierarchy for 5 dimentional self-normalized subalgebra. The graph of inserted subalgebras is constructed. The invariants for subalgebras from graph are calculated. All invariant submodels are constructed.
Mots-clés :
optimal system of subalgebras
Keywords: invariant submodel, graph of inserted subalgebras.
Keywords: invariant submodel, graph of inserted subalgebras.
@article{SEMR_2012_9_a26,
author = {E. V. Makarevich},
title = {Gasdynamics equations submodels hierarchy in case of state equation with separated density},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {306--328},
publisher = {mathdoc},
volume = {9},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a26/}
}
TY - JOUR AU - E. V. Makarevich TI - Gasdynamics equations submodels hierarchy in case of state equation with separated density JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2012 SP - 306 EP - 328 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a26/ LA - ru ID - SEMR_2012_9_a26 ER -
E. V. Makarevich. Gasdynamics equations submodels hierarchy in case of state equation with separated density. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 306-328. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a26/