Gasdynamics equations submodels hierarchy in case of state equation with separated density
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 306-328.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the gasdynamics equations with the state equation of the separated density. The optimal system of subalgebras for 12 dimentional Lie algebra admitted by the gasdynamics equations is constructed. For each subalgebra from the optimal system of subalgebras a submodel (invariant, partially invariant, differential invariant) can be constructed. The solutions of the submodel can be particular solutions of another submodels. In this case the submodel subalgebra include the subalgebra of another submodel, that is overalgebra. We consider submodels hierarchy for 5 dimentional self-normalized subalgebra. The graph of inserted subalgebras is constructed. The invariants for subalgebras from graph are calculated. All invariant submodels are constructed.
Mots-clés : optimal system of subalgebras
Keywords: invariant submodel, graph of inserted subalgebras.
@article{SEMR_2012_9_a26,
     author = {E. V. Makarevich},
     title = {Gasdynamics equations submodels hierarchy in case of state equation with separated density},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {306--328},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a26/}
}
TY  - JOUR
AU  - E. V. Makarevich
TI  - Gasdynamics equations submodels hierarchy in case of state equation with separated density
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 306
EP  - 328
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a26/
LA  - ru
ID  - SEMR_2012_9_a26
ER  - 
%0 Journal Article
%A E. V. Makarevich
%T Gasdynamics equations submodels hierarchy in case of state equation with separated density
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 306-328
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a26/
%G ru
%F SEMR_2012_9_a26
E. V. Makarevich. Gasdynamics equations submodels hierarchy in case of state equation with separated density. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 306-328. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a26/

[1] L. V. Ovsyannikov, “Programma podmodeli. Gazovaya dinamika”, Prikladnaya matematika i mekhanika, 58:4 (1994), 30–55 | MR | Zbl

[2] E.V. Makarevich, “Optimalnaya sistema podalgebr, dopuskaemykh uravneniyami gazovoi dinamiki v sluchae uravneniya sostoyaniya s razdelennoi plotnostyu”, Sibirskie Elektronnye Matematicheskie Izvestiya, 8 (2011), 19–38 | MR | Zbl

[3] Ovsyannikov L. V., Lektsii po teorii gruppovykh svoistv differentsialnykh uravnenii, Novosibirsk, 1966, 131 pp.

[4] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 400 pp.

[5] Khabirov S. V., “Klassifikatsiya differentsialno invariantnykh podmodelei”, SMZh, 45:3 (2004), 682–701 | MR | Zbl

[6] L.V. Ovsyannikov, Kanonicheskaya forma invariantnykh podmodelei gazovoi dinamiki, Preprint #3-97, RAN, Sibirskoe otdelenie, Institut gidrodinamiki, Novosibirsk, 1997, 41 pp.