On inverse problems for equations of mathematical physics with parameter
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 45-64
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose new approaches of investigation of inverse problems for equations of mathematical physics with parameter. We reduce the investigation of inverse problems for linear equations of hyperbolic and parabolic type to investigation of the Abel integral equations of the first kind. We obtain differential and integro-differential equations not containing unknown coefficients for nonlinear equations of elliptic type.
Keywords:
inverse problems of mathematical physics, analytical methods of solution, problems with parameter, integral equations.
@article{SEMR_2012_9_a22,
author = {Yu. E. Anikonov and M. V. Neshchadim},
title = {On inverse problems for equations of mathematical physics with parameter},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {45--64},
publisher = {mathdoc},
volume = {9},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a22/}
}
TY - JOUR AU - Yu. E. Anikonov AU - M. V. Neshchadim TI - On inverse problems for equations of mathematical physics with parameter JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2012 SP - 45 EP - 64 VL - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a22/ LA - ru ID - SEMR_2012_9_a22 ER -
Yu. E. Anikonov; M. V. Neshchadim. On inverse problems for equations of mathematical physics with parameter. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 45-64. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a22/