On inverse problems for equations of mathematical physics with parameter
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 45-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose new approaches of investigation of inverse problems for equations of mathematical physics with parameter. We reduce the investigation of inverse problems for linear equations of hyperbolic and parabolic type to investigation of the Abel integral equations of the first kind. We obtain differential and integro-differential equations not containing unknown coefficients for nonlinear equations of elliptic type.
Keywords: inverse problems of mathematical physics, analytical methods of solution, problems with parameter, integral equations.
@article{SEMR_2012_9_a22,
     author = {Yu. E. Anikonov and M. V. Neshchadim},
     title = {On inverse problems for equations of mathematical physics with parameter},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {45--64},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a22/}
}
TY  - JOUR
AU  - Yu. E. Anikonov
AU  - M. V. Neshchadim
TI  - On inverse problems for equations of mathematical physics with parameter
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 45
EP  - 64
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a22/
LA  - ru
ID  - SEMR_2012_9_a22
ER  - 
%0 Journal Article
%A Yu. E. Anikonov
%A M. V. Neshchadim
%T On inverse problems for equations of mathematical physics with parameter
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 45-64
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a22/
%G ru
%F SEMR_2012_9_a22
Yu. E. Anikonov; M. V. Neshchadim. On inverse problems for equations of mathematical physics with parameter. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 45-64. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a22/

[1] Yu.E. Anikonov, “Inverse problems for evolution and differential-difference equations with a parameter”, Journal of Inverse and Ill-Posed problems, 11:5 (2003), 439–473 | DOI | MR | Zbl

[2] Yu.E. Anikonov, “Asymptotic formulas in many-dimensional inverse problems for evolution equations with a parameter”, Journal of Inverse and Ill-posed Problems, 14:2 (2006), 107–109 | DOI | MR | Zbl

[3] Yu.E. Anikonov, “Formuly v lineinykh obratnykh zadachakh s parametrom”, Neklassicheskie uravneniya matematicheskoi fiziki, Izd-vo In-ta matematiki, Novosibirsk, 2007, 36–40

[4] N.L. Abasheeva, “Lineinaya obratnaya zadacha dlya operatorno-differentsialnogo uravneniya s parametrom”, Neklassicheskie uravneniya matematicheskoi fiziki, Izd-vo In-ta matematiki, Novosibirsk, 2007, 5–14

[5] N.L. Abasheeva, “Identification of a source for parabolic and hyperbolic equations with a parameter”, Journal of Inverse and Ill-Posed problems, 17:8 (2009), 527–544 | DOI | MR | Zbl

[6] Yu.E. Anikonov, “O edinstvennosti resheniya integralnykh uravnenii pervogo roda s tselymi yadrami”, Matem. zametki, 28:3 (1980), 401–405 | MR | Zbl

[7] M.V. Neshchadim, “Uniqueness of solution to integral equation of the first kind over real algebras with division of finite dimension (a general case)”, Journal of Inverse and Ill-posed Problems, 13:5 (2005), 495–502 | DOI | MR | Zbl

[8] V.M. Babich, V.S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972, 456 pp. | MR

[9] A.N. Tikhonov, “O edinstvennosti resheniya zadachi elektrorazvedki”, DAN SSSR, 69:6 (1949), 797–800 | Zbl

[10] A.V. Bitsadze, Uravneniya matematicheskoi fiziki, Nauka, M., 1982, 336 pp. | MR

[11] Yu.E. Anikonov, M.V. Neschadim, Analiticheskie predstavleniya reshenii ryada obratnykh zadach matematicheskoi fiziki, Preprint 218, IM SO RAN, Novosibirsk, 2009, 32 pp.

[12] Yu.E. Anikonov, M.V. Neschadim, Ob analiticheskikh metodakh v teorii obratnykh zadach matematicheskoi fiziki, Preprint 234, IM SO RAN, Novosibirsk, 2009, 62 pp.