Minimal quasivarieties of differential groupoids with nonzero multiplication
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 201-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe all covers of the variety of left zero modes in the lattice of quasivarieties of differential groupoids.
Keywords: differential groupoid, quasivariety, lattice of quasivarieties.
@article{SEMR_2012_9_a2,
     author = {A. V. Kravchenko},
     title = {Minimal quasivarieties of differential groupoids with nonzero multiplication},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {201--207},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a2/}
}
TY  - JOUR
AU  - A. V. Kravchenko
TI  - Minimal quasivarieties of differential groupoids with nonzero multiplication
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 201
EP  - 207
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a2/
LA  - ru
ID  - SEMR_2012_9_a2
ER  - 
%0 Journal Article
%A A. V. Kravchenko
%T Minimal quasivarieties of differential groupoids with nonzero multiplication
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 201-207
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a2/
%G ru
%F SEMR_2012_9_a2
A. V. Kravchenko. Minimal quasivarieties of differential groupoids with nonzero multiplication. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 201-207. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a2/

[1] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Nauchnaya kniga, Novosibirsk, 1999 | Zbl

[2] A. V. Kravchenko, “Slozhnost reshetok kvazimnogoobrazii dlya mnogoobrazii differentsialnykh gruppoidov”, Mat. trudy, 12 (2009), 26–39 | MR | Zbl

[3] A. V. Kravchenko, “Slozhnost reshetok kvazimnogoobrazii dlya mnogoobrazii differentsialnykh gruppoidov. II”, Mat. trudy (to appear)

[4] A. V. Kravchenko, “On the lattice of quasivarieties of differential groupoids”, Comment. Math. Univ. Carolin., 49 (2008), 11–17 | MR | Zbl

[5] J. Płonka, “On $k$-cyclic groupoids”, Math. Japon., 30 (1985), 371–382 | MR

[6] A. Romanowska, “On some representations of groupoid modes satisfying the reduction law”, Demonstr. Math., 21 (1988), 943–960 | MR | Zbl

[7] A. Romanowska and B. Roszkowska, “On some groupoid modes”, Demonstr. Math., 20 (1987), 277–290 | MR | Zbl

[8] A. Romanowska and B. Roszkowska, “Representation of $n$-cyclic groupoids”, Algebra Universalis, 26 (1989), 7–15 | DOI | MR | Zbl

[9] A. B. Romanowska and J. D. H. Smith, Modes, World Scientific, Singapore, 2002 | MR | Zbl