Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2012_9_a2, author = {A. V. Kravchenko}, title = {Minimal quasivarieties of differential groupoids with nonzero multiplication}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {201--207}, publisher = {mathdoc}, volume = {9}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a2/} }
A. V. Kravchenko. Minimal quasivarieties of differential groupoids with nonzero multiplication. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 201-207. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a2/
[1] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Nauchnaya kniga, Novosibirsk, 1999 | Zbl
[2] A. V. Kravchenko, “Slozhnost reshetok kvazimnogoobrazii dlya mnogoobrazii differentsialnykh gruppoidov”, Mat. trudy, 12 (2009), 26–39 | MR | Zbl
[3] A. V. Kravchenko, “Slozhnost reshetok kvazimnogoobrazii dlya mnogoobrazii differentsialnykh gruppoidov. II”, Mat. trudy (to appear)
[4] A. V. Kravchenko, “On the lattice of quasivarieties of differential groupoids”, Comment. Math. Univ. Carolin., 49 (2008), 11–17 | MR | Zbl
[5] J. Płonka, “On $k$-cyclic groupoids”, Math. Japon., 30 (1985), 371–382 | MR
[6] A. Romanowska, “On some representations of groupoid modes satisfying the reduction law”, Demonstr. Math., 21 (1988), 943–960 | MR | Zbl
[7] A. Romanowska and B. Roszkowska, “On some groupoid modes”, Demonstr. Math., 20 (1987), 277–290 | MR | Zbl
[8] A. Romanowska and B. Roszkowska, “Representation of $n$-cyclic groupoids”, Algebra Universalis, 26 (1989), 7–15 | DOI | MR | Zbl
[9] A. B. Romanowska and J. D. H. Smith, Modes, World Scientific, Singapore, 2002 | MR | Zbl