Around the A.\,D.~Alexandrov's theorem on a characterization of a sphere
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 639-652.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a survey paper on various results relates to the following theorem first proved by A.D. Alexandrov: Let $S$ be an analytic convex sphere-homeomorphic surface in $\mathbb R^3$ and let $k_1(\boldsymbol{x})\leqslant k_2(\boldsymbol{x})$ be its principal curvatures at the point $\boldsymbol{x}$. If the inequalities $k_1(\boldsymbol{x})\leqslant k\leqslant k_2(\boldsymbol{x})$ thold true with some constant $k$ for all $\boldsymbol{x}\in S$ then $S$ is a sphere. The imphases is on a result of Y. Martinez-Maure who first proved that the above statement is not valid for convex $C^2$-surfaces. For convenience of the reader, in addendum we give a Russian translation of that paper by Y. Martinez-Maure originally published in French in C. R. Acad. Sci., Paris, Sér. I, Math. 332 (2001), 41–44.
Mots-clés : normal section, Weingarten surface, convex surface, herisson
Keywords: principal curvature, virtual polytope.
@article{SEMR_2012_9_a16,
     author = {V. A. Aleksandrov},
     title = {Around the {A.\,D.~Alexandrov's} theorem on a characterization of a sphere},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {639--652},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a16/}
}
TY  - JOUR
AU  - V. A. Aleksandrov
TI  - Around the A.\,D.~Alexandrov's theorem on a characterization of a sphere
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 639
EP  - 652
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a16/
LA  - ru
ID  - SEMR_2012_9_a16
ER  - 
%0 Journal Article
%A V. A. Aleksandrov
%T Around the A.\,D.~Alexandrov's theorem on a characterization of a sphere
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 639-652
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a16/
%G ru
%F SEMR_2012_9_a16
V. A. Aleksandrov. Around the A.\,D.~Alexandrov's theorem on a characterization of a sphere. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 639-652. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a16/

[1п] A. D. Aleksandrov, “O teoremakh edinstvennosti dlya zamknutykh poverkhnostei”, Dokl. AN SSSR, 22:3 (1939), 99–102 | Zbl

[2п] A. D. Aleksandrov, “O krivizne poverkhnostei”, Vestn. LGU. Ser. matematiki, mekhaniki, astronomii, 1966, no. 19(4), 5–11 | MR | Zbl

[3п] D. Koutroufiotis, “On a conjectured characterization of the sphere”, Math. Ann., 205 (1973), 211–217 | DOI | MR | Zbl

[4п] R. Langevin, G. Levitt, H. Rosenberg, “Hérissones et multihérissons (enveloppes parametreés par leur application de Gauss)”, Singularities, Banach Center publ., 20, 1988, 245–253 | MR | Zbl

[5п] Y. Martinez-Maure, “Indice d'un hérisson: Étude et applications”, Publ. Mat., Barc., 44:1 (2000), 237–255 | MR | Zbl

[6п] H. F. Münzner, “Über eine spezielle Klasse von Nabelpunkten und analoge Singularitäten in der zentroaffinen Flächentheorie”, Comment. Math. Helv., 41 (1966), 88–104 | DOI | MR

[7п] H. F. Münzner, “Über Flächen mit einer Weingartenschen Ungleichung”, Math. Z., 97 (1967), 123–139 | DOI | MR

[8п] D. Sullivan, “Combinatorial invariants of analytic spaces”, Proc. Liverpool Singularities-Sympos., v. I, Lect. Notes Math., 192, 1971, 165–168 | DOI | MR