Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2012_9_a16, author = {V. A. Aleksandrov}, title = {Around the {A.\,D.~Alexandrov's} theorem on a characterization of a sphere}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {639--652}, publisher = {mathdoc}, volume = {9}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a16/} }
V. A. Aleksandrov. Around the A.\,D.~Alexandrov's theorem on a characterization of a sphere. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 639-652. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a16/
[1п] A. D. Aleksandrov, “O teoremakh edinstvennosti dlya zamknutykh poverkhnostei”, Dokl. AN SSSR, 22:3 (1939), 99–102 | Zbl
[2п] A. D. Aleksandrov, “O krivizne poverkhnostei”, Vestn. LGU. Ser. matematiki, mekhaniki, astronomii, 1966, no. 19(4), 5–11 | MR | Zbl
[3п] D. Koutroufiotis, “On a conjectured characterization of the sphere”, Math. Ann., 205 (1973), 211–217 | DOI | MR | Zbl
[4п] R. Langevin, G. Levitt, H. Rosenberg, “Hérissones et multihérissons (enveloppes parametreés par leur application de Gauss)”, Singularities, Banach Center publ., 20, 1988, 245–253 | MR | Zbl
[5п] Y. Martinez-Maure, “Indice d'un hérisson: Étude et applications”, Publ. Mat., Barc., 44:1 (2000), 237–255 | MR | Zbl
[6п] H. F. Münzner, “Über eine spezielle Klasse von Nabelpunkten und analoge Singularitäten in der zentroaffinen Flächentheorie”, Comment. Math. Helv., 41 (1966), 88–104 | DOI | MR
[7п] H. F. Münzner, “Über Flächen mit einer Weingartenschen Ungleichung”, Math. Z., 97 (1967), 123–139 | DOI | MR
[8п] D. Sullivan, “Combinatorial invariants of analytic spaces”, Proc. Liverpool Singularities-Sympos., v. I, Lect. Notes Math., 192, 1971, 165–168 | DOI | MR