Around the A.\,D.~Alexandrov's theorem on a characterization of a sphere
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 639-652

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a survey paper on various results relates to the following theorem first proved by A.D. Alexandrov: Let $S$ be an analytic convex sphere-homeomorphic surface in $\mathbb R^3$ and let $k_1(\boldsymbol{x})\leqslant k_2(\boldsymbol{x})$ be its principal curvatures at the point $\boldsymbol{x}$. If the inequalities $k_1(\boldsymbol{x})\leqslant k\leqslant k_2(\boldsymbol{x})$ thold true with some constant $k$ for all $\boldsymbol{x}\in S$ then $S$ is a sphere. The imphases is on a result of Y. Martinez-Maure who first proved that the above statement is not valid for convex $C^2$-surfaces. For convenience of the reader, in addendum we give a Russian translation of that paper by Y. Martinez-Maure originally published in French in C. R. Acad. Sci., Paris, Sér. I, Math. 332 (2001), 41–44.
Mots-clés : normal section, Weingarten surface, convex surface, herisson
Keywords: principal curvature, virtual polytope.
@article{SEMR_2012_9_a16,
     author = {V. A. Aleksandrov},
     title = {Around the {A.\,D.~Alexandrov's} theorem on a characterization of a sphere},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {639--652},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a16/}
}
TY  - JOUR
AU  - V. A. Aleksandrov
TI  - Around the A.\,D.~Alexandrov's theorem on a characterization of a sphere
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 639
EP  - 652
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a16/
LA  - ru
ID  - SEMR_2012_9_a16
ER  - 
%0 Journal Article
%A V. A. Aleksandrov
%T Around the A.\,D.~Alexandrov's theorem on a characterization of a sphere
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 639-652
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a16/
%G ru
%F SEMR_2012_9_a16
V. A. Aleksandrov. Around the A.\,D.~Alexandrov's theorem on a characterization of a sphere. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 639-652. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a16/