Convex pentagons which tile the plane (types: 11112, 11122)
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 478-530.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of classifying the convex pentagons that tile the plane edge-to-edge. It is proved that in each such tiling of the plane by pentagons, there exists a tile whose set of vertex degrees can be one of the following: (3,3,3,3,3), (3,3,3,3,4), (3,3,3,3,5), (3,3,3,3,6), (3,3,3,4,4). This provides the possibility of searching which finally leads to exhaustive classification of such pentagons. We consider convex pentagons types 11112, 11122.
Keywords: convex pentagon, tiling the plane, plane.
@article{SEMR_2012_9_a15,
     author = {O. G. Bagina},
     title = {Convex pentagons which tile the plane (types: 11112, 11122)},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {478--530},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a15/}
}
TY  - JOUR
AU  - O. G. Bagina
TI  - Convex pentagons which tile the plane (types: 11112, 11122)
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 478
EP  - 530
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a15/
LA  - ru
ID  - SEMR_2012_9_a15
ER  - 
%0 Journal Article
%A O. G. Bagina
%T Convex pentagons which tile the plane (types: 11112, 11122)
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 478-530
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a15/
%G ru
%F SEMR_2012_9_a15
O. G. Bagina. Convex pentagons which tile the plane (types: 11112, 11122). Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 478-530. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a15/

[1] Bagina O. G., “Mozaiki iz vypuklykh pyatiugolnikov”, Vestnik KemGU, 2011, no. 4(48), 63–73

[2] Bagina O., “Tiling the Plane with Congruent Equilateral Convex Pentagons”, J. Combin. Theory. Ser. A, 105:2 (2004), 221–232 | DOI | MR | Zbl

[3] Schattschneider D., “Tiling the Plane with Congruent Pentagons”, Math. Magazine, 51 (1978), 29–44 | DOI | MR | Zbl

[4] Sugimoto T., Ogawa T., “Systematic Study of Convex Pentagonal Tilings. I: Case of Convex Pentagons with Four Equal-length Edges”, Forma, 20 (2005), 1–18 | MR

[5] Stein R., “A new pentagon tiler”, Mathematics Magazine, 58 (1985), 308 | DOI | MR