On the homology sequence in a $P$-semi-abelian category
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 190-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for the existence and exactness of the long homology sequence in a category semi-abelian in the sense of Palamodov.
Keywords: strict morphism, P-semi-abelian category, (co)homology.
Mots-clés : semi-stable kernel, semi-stable cokernel
@article{SEMR_2012_9_a11,
     author = {Ya. A. Kopylov},
     title = {On the homology sequence in a $P$-semi-abelian category},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {190--200},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a11/}
}
TY  - JOUR
AU  - Ya. A. Kopylov
TI  - On the homology sequence in a $P$-semi-abelian category
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 190
EP  - 200
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a11/
LA  - en
ID  - SEMR_2012_9_a11
ER  - 
%0 Journal Article
%A Ya. A. Kopylov
%T On the homology sequence in a $P$-semi-abelian category
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 190-200
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a11/
%G en
%F SEMR_2012_9_a11
Ya. A. Kopylov. On the homology sequence in a $P$-semi-abelian category. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 190-200. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a11/

[1] J. Bonet and S. Dierolf, “The pullback for bornological and ultrabornological spaces”, Note Mat., 25:1 (2006), 63–67 | MR | Zbl

[2] F. Borceux and D. Bourn, Mal'cev, protomodular, homological and semi-abelian categories, Mathematics and its Applications, 566, Kluwer Academic Publishers, Dordrecht, 2004 | MR | Zbl

[3] I. Bucur and A. Deleanu, Introduction to the Theory of Categories and Functors, Pure and Applied Mathematics, XIX, Interscience Publication, John Wiley Sons, Ltd., London–New York–Sydney, 1968 | MR

[4] B. Eckmann and P. J. Hilton, “Exact couples in an abelian category”, J. Algebra, 3 (1966), 38–87 | DOI | MR | Zbl

[5] I. M. Gelfand and Yu. I. Manin, Methods of Homological Algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003 | MR | Zbl

[6] A. I. Generalov, “The Ker-Coker sequence for pre-abelian categories”, Abelian Groups and Modules, 11, 12, Tomsk. Gos. Univ., Tomsk, 1994, 78–89 (Russian) | MR

[7] N. V. Glotko and V. I. Kuz'minov, “On the cohomology sequence in a semiabelian category”, Sibirsk. Mat. Zh., 43:1 (2002), 41–50 | MR | Zbl

[8] M. Grandis, “On the categorical foundations of homological and homotopical algebra”, Cah. Topol. Géom. Différ. Catég., 33:2 (1992), 135–175 | MR | Zbl

[9] H. Jarchow, Locally Convex Spaces Mathematische Leitfaden, B. G. Teubner, Stuttgart, 1981 | MR | Zbl

[10] G. M. Kelly, “Monomorphisms, epimorphisms, and pull-backs”, J. Austral. Math. Soc., 9 (1969), 124-–142 | DOI | MR | Zbl

[11] Ya. A. Kopylov, “Homology in P-semi-abelian categories”, Sci. Ser. A Math. Sci. (N.S.), 17 (2009), 105–114 | MR | Zbl

[12] Siberian Math. J., 41:3 (2000), 509–517 | DOI | MR | Zbl

[13] Ya. A. Kopylov and V. I. Kuz'minov, “Exactness of the cohomology sequence corresponding to a short exact sequence of complexes in a semiabelian category”, Siberian Adv. Math., 13:3 (2003), 72–80 | MR | Zbl

[14] Siberian Math. J., 50:1 (2009), 86–95 | DOI | DOI | MR | Zbl

[15] Ya. A. Kopylov and S.-A. Wegner, “On the notion of a semi-abelian category in the sense of Palamodov”, Appl. Categ. Structures DOI: (Published online: 25 March 2011) 10.1007/s10485-011-9249-0

[16] G. Köthe, Topological Vector Spaces I, Springer Verlag, Berlin–Heidelberg–New York, 1969 | MR

[17] Siberian Math. J., 13:6 (1972), 895–902 | MR | Zbl

[18] B. M. Makarov, “Some pathological properties of inductive limits of B-spaces”, Uspekhi Mat. Nauk, 18:3(111) (1963), 171-–178 (Russian) | MR | Zbl

[19] Russ. Math. Surv., 26:1 (1971), 1–64 | DOI | MR

[20] Soviet Math. Dokl., 10 (1969), 1242–1245 | MR

[21] W. Rump, “Almost abelian categories”, Cah. Topol. Géom. Différ. Catég., 42:3 (2001), 163–225 | MR | Zbl

[22] W. Rump, “A counterexample to Raĭkov's conjecture”, Bull. Lond. Math. Soc., 40:6 (2008), 985–994 | DOI | MR | Zbl

[23] W. Rump, “Analysis of a problem of Raikov with applications to barreled and bornological spaces”, J. of Pure Appl. Algebra, 215:1 (2011), 44–52 | DOI | MR | Zbl

[24] J.-P. Schneiders, Quasi-Abelian Categories and Sheaves, Mém. Soc. Math. Fr. (N.S.), no. 76, 1999 | MR

[25] J. Wengenroth, “The Raikov conjecture fails for simple analytical reasons”, J. of Pure Appl. Algebra (to appear) (Available online 27 January 2012)

[26] J. Soviet Mathematics, 19:1 (1982), 1060–1067 | DOI | MR | MR | Zbl | Zbl