On finite groups acting on spheres and finite subgroups of orthogonal groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 1-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a survey on old and new results as well as an introduction to various related basic notions and concepts, based on two talks given at the International Workshop on Geometry and Analysis in Kemerovo (Sobolev Institute of Mathematics, Kemerovo State University) and at the University of Krasnojarsk in June 2011. We discuss finite groups acting on low-dimensional spheres and homology spheres, comparing with the finite subgroups of the corresponding orthogonal groups, and also finite simple groups acting on spheres and homology spheres of arbitrary dimension.
Keywords: finite groups acting on spheres, finite subgroups of orthogonal groups, finite simple groups.
@article{SEMR_2012_9_a10,
     author = {Bruno P. Zimmermann},
     title = {On finite groups acting on spheres and finite subgroups of orthogonal groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a10/}
}
TY  - JOUR
AU  - Bruno P. Zimmermann
TI  - On finite groups acting on spheres and finite subgroups of orthogonal groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 1
EP  - 12
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a10/
LA  - en
ID  - SEMR_2012_9_a10
ER  - 
%0 Journal Article
%A Bruno P. Zimmermann
%T On finite groups acting on spheres and finite subgroups of orthogonal groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 1-12
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a10/
%G en
%F SEMR_2012_9_a10
Bruno P. Zimmermann. On finite groups acting on spheres and finite subgroups of orthogonal groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 1-12. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a10/

[1] G. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972 | MR | Zbl

[2] K.S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, 87, Springer, 1982 | MR

[3] M.J. Collins, “On Jordan's theorem for complex linear groups”, J. Group Theory, 10 (2007), 411–423 | DOI | MR | Zbl

[4] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Oxford University Press, 1985 | MR | Zbl

[5] M.W. Davis, “A survey of results in higher dimensions”, The Smith Conjecture, eds. J.W. Morgan, H. Bass, Academic Press, 1984, 227–240 | MR

[6] R.M. Dotzel, G.C. Hamrick, “$p$-group actions on homology spheres”, Invent. math., 62 (1981), 437–442 | DOI | MR

[7] P. Du Val, Homographies, Quaternions and Rotations, Oxford Math. Monographs, Oxford University Press, 1964 | MR | Zbl

[8] W. Fulton, J. Harris, Representation Theory: A First Course, Graduate Texts in Mathematics, 129, Springer-Verlag, 1991 | DOI | MR | Zbl

[9] D. Gorenstein, The Classification of Finite Simple Groups, Plenum Press, New York, 1983 | MR | Zbl

[10] D. Gorenstein, Finite Simple Groups: An Introduction to their Classification, Plenum Press, New York, 1982 | MR | Zbl

[11] D. Gorenstein, R. Lyons, “The local structure of finite group of characteristic 2 type”, Memoirs Amer. Math. Soc., 42:276 (1983), 1–731 | MR

[12] A. Guazzi, B. Zimmermann, “On finite simple groups acting on homology spheres”, Monatshefte für Mathematik (to appear)

[13] B. Huppert, Endliche Gruppen I, Grundlehren der math. Wissenschaften, 134, Springer-Verlag, Berlin, 1967 | DOI | MR | Zbl

[14] M. Mecchia, B. Zimmermann, “On finite groups acting on homology 4-spheres and finite subgroups of $\mathrm{SO}(5)$”, Top. Appl., 158 (2011), 741–747 | DOI | MR | Zbl

[15] M. Mecchia, B. Zimmermann, “On finite simple and nonsolvable groups acting on homology 4-spheres”, Top. Appl., 153 (2006), 2933–2942 | DOI | MR | Zbl

[16] M. Mecchia, B. Zimmermann, “On finite simple groups acting on integer and mod 2 homology 3-spheres”, J. Algebra, 298 (2006), 460–467 | DOI | MR | Zbl

[17] J.Morgan, H.Bass, The Smith Conjecture, Academic Press, New York, 1984 | MR | Zbl

[18] D. Rolfson, Knots and Links, Mathematics Lecture Series, 7, Publish of Perish, Berkeley, 1976 | MR

[19] E. Stensholt, “Certain embeddings among finite groups of Lie type”, J. Algebra, 53 (1978), 136–187 | DOI | MR | Zbl

[20] M. Suzuki, Group Theory I, Springer-Verlag, 1982 | MR | Zbl

[21] M. Suzuki, Group Theory II, Springer-Verlag, 1986 | MR

[22] J.A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967 | MR | Zbl

[23] B. Zimmermann, “On finite simple groups acting on homology 3-spheres”, Top. Appl., 125 (2002), 199–202 | DOI | MR | Zbl

[24] B. Zimmermann, “Some results and conjectures on finite groups acting on homology spheres”, Sib. Electron. Math. Rep., 2 (2005), 233–238 | MR | Zbl