On finite groups acting on spheres and finite subgroups of orthogonal groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 1-12

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a survey on old and new results as well as an introduction to various related basic notions and concepts, based on two talks given at the International Workshop on Geometry and Analysis in Kemerovo (Sobolev Institute of Mathematics, Kemerovo State University) and at the University of Krasnojarsk in June 2011. We discuss finite groups acting on low-dimensional spheres and homology spheres, comparing with the finite subgroups of the corresponding orthogonal groups, and also finite simple groups acting on spheres and homology spheres of arbitrary dimension.
Keywords: finite groups acting on spheres, finite subgroups of orthogonal groups, finite simple groups.
@article{SEMR_2012_9_a10,
     author = {Bruno P. Zimmermann},
     title = {On finite groups acting on spheres and finite subgroups of orthogonal groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {9},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2012_9_a10/}
}
TY  - JOUR
AU  - Bruno P. Zimmermann
TI  - On finite groups acting on spheres and finite subgroups of orthogonal groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2012
SP  - 1
EP  - 12
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2012_9_a10/
LA  - en
ID  - SEMR_2012_9_a10
ER  - 
%0 Journal Article
%A Bruno P. Zimmermann
%T On finite groups acting on spheres and finite subgroups of orthogonal groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2012
%P 1-12
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2012_9_a10/
%G en
%F SEMR_2012_9_a10
Bruno P. Zimmermann. On finite groups acting on spheres and finite subgroups of orthogonal groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 9 (2012), pp. 1-12. http://geodesic.mathdoc.fr/item/SEMR_2012_9_a10/