Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2011_8_a8, author = {S. V. Goryainov and L. V. Shalaginov}, title = {On {Deza} grahps with 14, 15 and 16 vertices}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {105--115}, publisher = {mathdoc}, volume = {8}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a8/} }
S. V. Goryainov; L. V. Shalaginov. On Deza grahps with 14, 15 and 16 vertices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 105-115. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a8/
[1] R.C. Bose, “Strongly regular graphs, partial geometries and partially balanced designs”, Pacific J. Math., 13 (1963), 389–419 | MR | Zbl
[2] M. Deza, A. Deza, “The ridge graph of the metric polytope and some relatives”, Polytopes: Abstract, convex and computational, NATO ASI Series, eds. T. Bisztriczky et al., Kluwer Academic, 1994, 359–372 | MR | Zbl
[3] M. Erickson, S. Fernando, W.H. Haemers, D. Hardy, J. Hemmeter, “Deza graphs: a generalization of strongly regular graphs”, J. Comb. Designs., 7 (1999), 359–405 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[4] F. Harary, Graph theory, Addison-Wesley, Reading, 1969 | MR
[5] L.V. Shalaginov, “O grafakh Deza s parametrami grafov dopolnitelnykh k treugolnym i reshetchatym grafam”, Tezisy 42-i Vserossiiskoi molodezhnoi shkoly-konferentsii “Sovremennye problemy matematiki”, IMM UrO RAN, Ekaterinburg, 2011, 250–252