On Deza grahps with 14, 15 and 16 vertices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 105-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the following generalization of strongly regular graphs. A graph $G$ is a Deza graph if it is regular and the number of common neighbors of two distinct vertices takes on one of two values (not necessarily depending on the adjacency of the two vertices). We list all Deza graphs with diameter two which are not strongly regular and have 14, 15 or 16 vertices.
Keywords: Deza graph, strictly Deza graph, strongly regular graph
Mots-clés : group.
@article{SEMR_2011_8_a8,
     author = {S. V. Goryainov and L. V. Shalaginov},
     title = {On {Deza} grahps with 14, 15 and 16 vertices},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {105--115},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a8/}
}
TY  - JOUR
AU  - S. V. Goryainov
AU  - L. V. Shalaginov
TI  - On Deza grahps with 14, 15 and 16 vertices
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 105
EP  - 115
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a8/
LA  - ru
ID  - SEMR_2011_8_a8
ER  - 
%0 Journal Article
%A S. V. Goryainov
%A L. V. Shalaginov
%T On Deza grahps with 14, 15 and 16 vertices
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 105-115
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a8/
%G ru
%F SEMR_2011_8_a8
S. V. Goryainov; L. V. Shalaginov. On Deza grahps with 14, 15 and 16 vertices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 105-115. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a8/

[1] R.C. Bose, “Strongly regular graphs, partial geometries and partially balanced designs”, Pacific J. Math., 13 (1963), 389–419 | MR | Zbl

[2] M. Deza, A. Deza, “The ridge graph of the metric polytope and some relatives”, Polytopes: Abstract, convex and computational, NATO ASI Series, eds. T. Bisztriczky et al., Kluwer Academic, 1994, 359–372 | MR | Zbl

[3] M. Erickson, S. Fernando, W.H. Haemers, D. Hardy, J. Hemmeter, “Deza graphs: a generalization of strongly regular graphs”, J. Comb. Designs., 7 (1999), 359–405 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[4] F. Harary, Graph theory, Addison-Wesley, Reading, 1969 | MR

[5] L.V. Shalaginov, “O grafakh Deza s parametrami grafov dopolnitelnykh k treugolnym i reshetchatym grafam”, Tezisy 42-i Vserossiiskoi molodezhnoi shkoly-konferentsii “Sovremennye problemy matematiki”, IMM UrO RAN, Ekaterinburg, 2011, 250–252