Approximation of attainability sets and calculation of time-optimal control in real time
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 72-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to realization of time-optimal control in real time for linear systems under control with constraint is proposed. It is based on subdividing the computational costs on those made in advance of the control process and those carried as it proceeds. The preliminary computations do nit depend on actual initial condition and rely on approximation of attainability sets in different periods of time by complex of hyperplane. Methods of constructing them are given with a way to single out the support hyperplane. Methods of approximate finding and following correction for normalized vector of adjoint system initial conditions, switching times of time-optimal control, and the control completion time are suggested. Estimation of computational working time is given. Reduction of unspecified form systems to their canonical form is considered. Quantitative measure of total controllability is deter-mined. Results of modeling and numerical calculations are presented.
Keywords: optimal control, speed, attainability sets, hyperplane, real time, adjoint system, initial condition, edge point, first approximation, approximating construction, computational costs.
@article{SEMR_2011_8_a7,
     author = {V. M. Aleksandrov},
     title = {Approximation of attainability sets and calculation of time-optimal control in real time},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {72--104},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a7/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - Approximation of attainability sets and calculation of time-optimal control in real time
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 72
EP  - 104
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a7/
LA  - ru
ID  - SEMR_2011_8_a7
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T Approximation of attainability sets and calculation of time-optimal control in real time
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 72-104
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a7/
%G ru
%F SEMR_2011_8_a7
V. M. Aleksandrov. Approximation of attainability sets and calculation of time-optimal control in real time. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 72-104. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a7/

[1] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F.Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Nauka, Moskva, 1976 | Zbl

[2] V.G. Boltyanskii, Matematicheskie metody optimalnogo upravleniya, Nauka, Moskva, 1969 | MR

[3] I.A. Krylov, F.L. Chernousko, “O metode posledovatelnykh priblizhenii dlya resheniya zadach optimalnogo upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 2:6 (1962), 1132–1139 | MR | Zbl

[4] V.B. Gindes, “Odin metod posledovatelnykh priblizhenii dlya resheniya lineinykh zadach optimalnogo upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 10:1 (1970), 216–223 | MR | Zbl

[5] R.P. Fedorenko, Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, Moskva, 1978 | MR | Zbl

[6] F.L. Chernousko, V.B. Kolmanovskii, “Vychislitelnye i priblizhennye metody optimalnogo upravleniya”, Matematicheskii analiz, 14 (1977), 101–166

[7] A.A. Lyubushin, “O primenenii modifikatsii metoda posledovatelnykh priblizhenii dlya resheniya zadach optimalnogo upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 22:1 (1982), 30–35 | MR | Zbl

[8] N.I. Grachev, Yu.G.Evtushenko, “Biblioteka programm dlya resheniya zadach optimalnogo upravleniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 19:2 (1979), 367–387 | MR | Zbl

[9] R. Gabasov, F.M. Kirillova, “Postroenie posledovatelnykh priblizhenii dlya nekotorykh zadach optimalnogo upravleniya”, Avtomatika i telemekhanika, 2 (1966), 5–17 | MR | Zbl

[10] B.N. Pshenichnyi, L.A. Sobolenko, “Uskorennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 6 (1968), 1345–1352 | MR | Zbl

[11] A.A. Belolipetskii, “Chislennyi metod resheniya lineinoi zadachi optimalnogo upravleniya svedeniem ee k zadache Koshi”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 17:6 (1977), 1380–1386 | MR | Zbl

[12] Yu.N.Kiselev, M.V. Orlov, “Chislennye algoritmy lineinykh bystrodeistvii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 31:12 (1991), 1763–1771 | MR | Zbl

[13] V.A. Srochko, Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, Moskva, 2000

[14] V.M. Aleksandrov, “Chislennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 38:6 (1998), 918–931 | MR | Zbl

[15] F.L. Chernousko, “Ellipsoidalnye otsenki oblasti dostizhimosti upravlyaemoi sistemy”, Prikladnaya matematika i mekhanika, 1 (1981), 11–19 | MR

[16] V.M. Aleksandrov, “Optimalnoe po bystrodeistviyu pozitsionno-programmnoe upravlenie lineinymi dinamicheskimi sistemami”, Sibirskie elektronnye matematicheskie izvestiya, 6 (2009), 385–439 | MR

[17] F.R. Gantmakher, Teoriya matrits, Nauka, Moskva, 1966 | MR

[18] Yu.N. Andreev, “Algebraicheskie metody prostranstva sostoyanii v teorii upravleniya lineinymi ob'ektami (obzor zarubezhnoi literatury)”, Avtomatika i telemekhanika, 3 (1977), 5–50 | Zbl

[19] E.Ya. Smirnov, Nekotorye zadachi matematicheskoi teorii upravleniya, Izd-vo LGU, Leningrad, 1981 | MR | Zbl

[20] R.E. Kalman, “Mathematical description of linear dynamical systems”, SIAM J. Control, 1 (1963), 152–192 | MR | Zbl

[21] R. Kalman, “Ob obschei teorii sistem upravleniya”, Trudy I-go Kongressa IFAK, Nauka, Moskva, 1966, 260–266

[22] J.P. La Salle, “Time optimal control systems”, Proc. Nat. Ac. USA, 4 (1959), 573-577 | DOI | MR

[23] V.M. Popov, Giperustoichivost avtomaticheskikh sistem, Nauka, Moskva, 1970 | MR

[24] V.M. Aleksandrov, “Priblizhennoe reshenie zadach optimalnogo upravleniya”, Problemy kibernetiki, 41, Nauka, Moskva, 1984, 143–206

[25] A.A. Feldbaum, Osnovy teorii optimalnykh avtomaticheskikh sistem, Nauka, Moskva, 1966 | MR