Some topics in graph theory related with group theory
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 62-67
Cet article a éte moissonné depuis la source Math-Net.Ru
We discuss some concepts concerning graphs (mainly concepts of symmetrical extensions of graphs by graphs and of $k$-contractibility, $k$ a positive integer, for graphs), which are related with the group theory and seem to be of interest.
Keywords:
vertex-symmetric graph, symmetrical extension, $k$-contractibility.
@article{SEMR_2011_8_a6,
author = {V. I. Trofimov},
title = {Some topics in graph theory related with group theory},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {62--67},
year = {2011},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a6/}
}
V. I. Trofimov. Some topics in graph theory related with group theory. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 62-67. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a6/
[1] Trofimov V. I., “Graphs with polynomial growth”, Math. USSR Sb., 51 (1985), 405–417 | DOI | MR | Zbl
[2] Woess W., “Topological groups and recurrence of quasitransitive graphs”, Rend. Sem. Mat. Milano, 64 (1996), 185–213 | DOI | MR | Zbl
[3] Trofimov V. I., “Automorphisms of graphs and a characterization of lattices”, Math. USSR Izvestiya, 22:2 (1984), 379–391 | DOI | Zbl
[4] Trofimov V. I., Actions of groups on graphs, Doctor. Dissertation, Inst. Math. and Mech. UB Russian Acad. Sci., Ekaterinburg, 1992 (in Russian) | MR
[5] Rotman J., An introduction to the theory of groups, Springer-Verlag, New York, 1995 | MR | Zbl