Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2011_8_a33, author = {A. V. Tetenov and I. B. Davydkin}, title = {Some properties of self-similar convex polytopes}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {48--52}, publisher = {mathdoc}, volume = {8}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a33/} }
A. V. Tetenov; I. B. Davydkin. Some properties of self-similar convex polytopes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 48-52. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a33/
[1] Panzone P. A., A note on the convex hulls of self-similar sets, Actas del 2 congreso " Dr. A.A. Monteiro", Inst. de Matematica de Bahia Blanca, 1993, 57–64 | MR
[2] Strichartz R., Wang Y., “Geometry of self-affine tiles I”, Indiana Univ. Math. J., 48 (1999), 1–24 | MR
[3] Kirat I., Kocyigit I., “Remarcs on self-affine fractals with polytope convex hulls”, Fractals, 18:4 (2010), 483–498 | DOI
[4] Winter S., Curvature measures and fractals, Diss. Math. No 453, 2008, 66 pp. | MR
[5] Zahle M., Workshop on Fractals and Tilings (2009 July 6–10, Strobl, Austria)
[6] Tetenov A. V., Davydkin I. B., Hausdorff dimension of the set of extreme points of a self-similar set, arXiv: math.MG/0202215
[7] Tetenov A. V., Davydkin I. B., “O vypuklykh obolochkakh samopodobnykh mnozhestv”, Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya “Matematika, mekhanika, informatika”, 5:2 (2005), 21–27 | MR
[8] Tetenov A. V., “Self-similar Jordan arcs and graph directed systems of similarities”, Siberian Math. Journal, 47:5 (2006), 940–949 | DOI | MR | Zbl