Some properties of self-similar convex polytopes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 48-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for each semigroup $\mathrm G$ of similarities defining the self-similarity structure on a convex self-similar polytope $K$ there is an edge $A$ of $K$ such that the fixed points of homotheties $g\in G$ are dense in $A$.
Keywords: self-similar set, convex polytope, graph-directed IFS, homothety, semigroup.
Mots-clés : fractal
@article{SEMR_2011_8_a33,
     author = {A. V. Tetenov and I. B. Davydkin},
     title = {Some properties of self-similar convex polytopes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {48--52},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a33/}
}
TY  - JOUR
AU  - A. V. Tetenov
AU  - I. B. Davydkin
TI  - Some properties of self-similar convex polytopes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 48
EP  - 52
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a33/
LA  - en
ID  - SEMR_2011_8_a33
ER  - 
%0 Journal Article
%A A. V. Tetenov
%A I. B. Davydkin
%T Some properties of self-similar convex polytopes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 48-52
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a33/
%G en
%F SEMR_2011_8_a33
A. V. Tetenov; I. B. Davydkin. Some properties of self-similar convex polytopes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 48-52. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a33/

[1] Panzone P. A., A note on the convex hulls of self-similar sets, Actas del 2 congreso " Dr. A.A. Monteiro", Inst. de Matematica de Bahia Blanca, 1993, 57–64 | MR

[2] Strichartz R., Wang Y., “Geometry of self-affine tiles I”, Indiana Univ. Math. J., 48 (1999), 1–24 | MR

[3] Kirat I., Kocyigit I., “Remarcs on self-affine fractals with polytope convex hulls”, Fractals, 18:4 (2010), 483–498 | DOI

[4] Winter S., Curvature measures and fractals, Diss. Math. No 453, 2008, 66 pp. | MR

[5] Zahle M., Workshop on Fractals and Tilings (2009 July 6–10, Strobl, Austria)

[6] Tetenov A. V., Davydkin I. B., Hausdorff dimension of the set of extreme points of a self-similar set, arXiv: math.MG/0202215

[7] Tetenov A. V., Davydkin I. B., “O vypuklykh obolochkakh samopodobnykh mnozhestv”, Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya “Matematika, mekhanika, informatika”, 5:2 (2005), 21–27 | MR

[8] Tetenov A. V., “Self-similar Jordan arcs and graph directed systems of similarities”, Siberian Math. Journal, 47:5 (2006), 940–949 | DOI | MR | Zbl