The second cohomology groups of simple modules for $G_2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 381-396.

Voir la notice de l'article provenant de la source Math-Net.Ru

The second cohomology groups for simple, simply connected algebraic group $G_2$ over an algebraically closed field of characteristic $p\ge7$ with coefficients in the simple finite-dimensional modules are described.
Keywords: cohomology
Mots-clés : algebraic group, simple module, Frobenius kernel.
@article{SEMR_2011_8_a32,
     author = {S. S. Ibraev},
     title = {The second cohomology groups of simple modules for $G_2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {381--396},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a32/}
}
TY  - JOUR
AU  - S. S. Ibraev
TI  - The second cohomology groups of simple modules for $G_2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 381
EP  - 396
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a32/
LA  - en
ID  - SEMR_2011_8_a32
ER  - 
%0 Journal Article
%A S. S. Ibraev
%T The second cohomology groups of simple modules for $G_2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 381-396
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a32/
%G en
%F SEMR_2011_8_a32
S. S. Ibraev. The second cohomology groups of simple modules for $G_2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 381-396. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a32/

[1] Andersen H.H., “The strong linkag principle”, J. fur die reine angew. Math., 315 (1980), 53–59 | DOI | MR | Zbl

[2] Andersen H.H., “Extensions of modules for algebraic groups”, Amer. J. Math., 106 (1984), 489–504 | DOI | MR | Zbl

[3] Andersen H.H., Jantzen J.C., “Cohomology of induced representations for algebraic groups”, Math. Annalen, 269 (1984), 487–525 | DOI | MR | Zbl

[4] Cline E., Parshall B., Scott L., W. wan der Kallen, “Rational and generic cohomology”, Invent. Math., 39 (1977), 143–163 | DOI | MR | Zbl

[5] Cline E., Parshall B., Scott L., “Cohomology, hyperalgebras and representations”, J. of Algebra, 63 (1980), 98–123 | DOI | MR | Zbl

[6] Jantzen J.C., “Darstellungen halbeinfasher Gruppen und Kontravariante Formen”, J. Reine Angew. Math., 290 (1977), 117–141 | DOI | MR | Zbl

[7] Jantzen J.C., “Weyl modules for groups of Lie type”, Finite simple groups II, Proc. Durham, 1978, Acad. Press, 1980, 291–300

[8] Jantzen J.C., Representations of algebraic groups, Pure and Applied Mathematics, 131, Boston, 1987 | MR | Zbl

[9] Jantzen J.C., “First cohomology groups for classical Lie algebras”, Progress in Math., 95 (1991), 291–300 | MR

[10] Liu Jia-chun, Ye Jia-chen, “Extensions of simple modules for the algebraic group of type $G_2$”, Commun. in Algebra, 21:6 (1993), 1909–1946 | DOI | MR | Zbl

[11] O’Halloran J., “Weyl modules and the cohomology of Chevalley groups”, Amer. J. Math.,, 103:2 (1981), 399–410 | DOI | MR | Zbl

[12] Stewart D.I., The second cohomology of simple $SL_3$-modules, 2009, arXiv: 0907.4626v1

[13] Stewart D.I., “The second cohomology of simple $SL_2$-modules”, Proc. Amer. Math. Soc., 138 (2010), 427–434 | DOI | MR | Zbl

[14] Ye Jia-chen, “Extensions of simple modules for the group $Sp(4,K)$”, J. London Math. Soc., 2:41 (1990), 51–62 | DOI | MR