Partial generalization of one of Macdonald's results
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 369-371
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that if in every finite subgroup of a $2$-group $G$ the identity $[x,y]^2=1$ holds, then this identity holds in $G$ also. In particular, $G$ is locally finite, its derived subgroup is of exponent 4, and the second derived subgroup belongs to the center of $G$.
Mots-clés :
$p$-группа, коммутант.
@article{SEMR_2011_8_a30,
author = {D. V. Lytkina},
title = {Partial generalization of one of {Macdonald's} results},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {369--371},
year = {2011},
volume = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a30/}
}
D. V. Lytkina. Partial generalization of one of Macdonald's results. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 369-371. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a30/
[1] I. D. Macdonald, “On certain varieties of groups”, Math. Z., 76:2 (1961), 270–282 | DOI | MR | Zbl
[2] GAP: Groups, algorithms and programming http://www.gap-system.org
[3] D. V. Lytkina, “On $2$-groups, all of whose finite subgroups are of nilpotency class $2$”, Sib. Electron. Math. Reports, 8 (2011), 1–3 | MR