Partial generalization of one of Macdonald's results
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 369-371.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if in every finite subgroup of a $2$-group $G$ the identity $[x,y]^2=1$ holds, then this identity holds in $G$ also. In particular, $G$ is locally finite, its derived subgroup is of exponent 4, and the second derived subgroup belongs to the center of $G$.
Mots-clés : $p$-группа, коммутант.
@article{SEMR_2011_8_a30,
     author = {D. V. Lytkina},
     title = {Partial generalization of one of {Macdonald's} results},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {369--371},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a30/}
}
TY  - JOUR
AU  - D. V. Lytkina
TI  - Partial generalization of one of Macdonald's results
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 369
EP  - 371
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a30/
LA  - ru
ID  - SEMR_2011_8_a30
ER  - 
%0 Journal Article
%A D. V. Lytkina
%T Partial generalization of one of Macdonald's results
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 369-371
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a30/
%G ru
%F SEMR_2011_8_a30
D. V. Lytkina. Partial generalization of one of Macdonald's results. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 369-371. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a30/

[1] I. D. Macdonald, “On certain varieties of groups”, Math. Z., 76:2 (1961), 270–282 | DOI | MR | Zbl

[2] GAP: Groups, algorithms and programming http://www.gap-system.org

[3] D. V. Lytkina, “On $2$-groups, all of whose finite subgroups are of nilpotency class $2$”, Sib. Electron. Math. Reports, 8 (2011), 1–3 | MR