Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2011_8_a28, author = {A. Yu. Vesnin and S. V. Matveev and E. A. Fominykh}, title = {Complexity of 3-dimensional manifolds: exact values and estimates}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {341--364}, publisher = {mathdoc}, volume = {8}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a28/} }
TY - JOUR AU - A. Yu. Vesnin AU - S. V. Matveev AU - E. A. Fominykh TI - Complexity of 3-dimensional manifolds: exact values and estimates JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2011 SP - 341 EP - 364 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a28/ LA - ru ID - SEMR_2011_8_a28 ER -
%0 Journal Article %A A. Yu. Vesnin %A S. V. Matveev %A E. A. Fominykh %T Complexity of 3-dimensional manifolds: exact values and estimates %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2011 %P 341-364 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a28/ %G ru %F SEMR_2011_8_a28
A. Yu. Vesnin; S. V. Matveev; E. A. Fominykh. Complexity of 3-dimensional manifolds: exact values and estimates. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 341-364. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a28/
[1] A.Yu. Vesnin, “Trekhmernye giperbolicheskie mnogoobraziya tipa Lebellya”, Sib. matem. zhurn., 28:5 (1987), 50–53 | MR
[2] A.Yu. Vesnin, “Ob'emy trekhmernykh giperbolicheskikh mnogoobrazii Lebellya”, Matem. zametki, 64:1 (1998), 17–23 | MR | Zbl
[3] A.Yu. Vesnin, T.A. Kozlovskaya, “Razvetvlennye tsiklicheskie nakrytiya linzovykh prostranstv”, Sib. matem. zhurn., 52:3 (2011), 542–554
[4] A.Yu. Vesnin, S.V. Matveev, K. Petronio, “Dvustoronnie otsenki slozhnosti mnogoobrazii Lëbellya”, Dokl. Akad. nauk, 416:3 (2007), 295–297 | MR | Zbl
[5] A.Yu. Vesnin, A.D. Mednykh, “Giperbolicheskie ob'emy mnogoobrazii Fibonachchi”, Sib. matem. zhurn., 36:2 (1995), 266–277 | MR | Zbl
[6] A.Yu. Vesnin, E.A. Fominykh, “Tochnye znacheniya slozhnosti mnogoobrazii Paolyutsi – Tsimmermana”, Dokl. Akad. nauk, 439:6 (2011), 727–729
[7] L. Grasselli, M. Mulatstsani, “Mnogoobraziya Zeiferta i $(1,1)$-uzly”, Sib. matem. zhurn., 50:1 (2009), 28–39 | MR | Zbl
[8] T.A. Kozlovskaya, “Obobschenie mnogoobraziya Everita. Diagrammy Khegora. Slozhnost”, Vestnik KemGU, 3/2 (2011), 54–59
[9] S.V. Matveev, “Slozhnost trekhmernykh mnogoobrazii i ikh perechislenie v poryadke vozrastaniya slozhnosti”, Dokl. Akad. nauk SSSR, 301:2 (1988), 280–283 | MR
[10] S.V. Matveev, “Raspoznavanie i tabulirovanie trekhmernykh mnogoobrazii”, Dokl. Akad. nauk, 400:1 (2005), 26–28 | MR
[11] S.V. Matveev, “Tabulirovanie trekhmernykh mnogoobrazii”, Uspekhi matem. nauk, 60:4 (2005), 97–122 | MR | Zbl
[12] S.V. Matveev, Algoritmicheskaya topologiya i klassifikatsiya trekhmernykh mnogoobrazii, MTsNMO, M., 2007, 456 pp.
[13] S.V. Matveev, E.L. Pervova, “Nizhnie otsenki slozhnosti trekhmernykh mnogoobrazii”, Dokl. Akad. nauk, 378:2 (2001), 151–152 | MR | Zbl
[14] S.V. Matveev, A.T. Fomenko, “Izoenergeticheskie poverkhnosti integriruemykh gamiltonovykh sistem, perechislenie trekhmernykh mnogoobrazii v poryadke vozrastaniya ikh slozhnosti i vychislenie ob'emov zamknutykh giperbolicheskikh mnogoobrazii”, Uspekhi matem. nauk, 43:1 (1988), 5–22 | MR | Zbl
[15] D.O. Nikolaev, “Klassifikatsiya mnogoobrazii slozhnosti 0”, Vestnik Chelyabinskogo gosudarstvennogo universiteta, Matematika. Mekhanika. Informatika, 6 (2008), 101–107
[16] E.A. Fominykh, “Verkhnie otsenki slozhnosti dlya beskonechnoi serii graf-mnogoobrazii”, Sib. elektron. matem. izv., 5 (2008), 215–228 | MR
[17] E.A. Fominykh, “Khirurgii Dena na uzle vosmerka: verkhnyaya otsenka slozhnosti”, Sib. matem. zhurn., 52:3 (2011), 680–689 | Zbl
[18] E.A. Fominykh, “Verkhnie otsenki slozhnosti mnogoobrazii, skleennykh iz dvukh mnogoobrazii Zeiferta s bazoi disk i dvumya osobymi sloyami”, Vestnik KemGU, 3/2 (2011), 83–88
[19] G. Amendola, B. Martelli, “Non-orientable 3-manifolds of complexity up to 7”, Topology Appl., 150 (2005), 179–195 | DOI | MR | Zbl
[20] S. Anisov, “Exact values of complexity for an infinite number of 3-manifolds”, Moscow Math. J., 5:2 (2005), 305–310 | MR | Zbl
[21] by G. Burde, H. Zieschang Knots, Studies in Math., 5, de Gruyter, Berlin-New York, 1985 | MR | Zbl
[22] P. Callahan, M. Hildebrand, J. Weeks, “A census of cusped hyperbolic 3-manifolds”, Math. Comp., 68 (1999), 321–332 | DOI | MR | Zbl
[23] M.R. Casali, “Computing Matveev's complexity of non-orientable 3-manifolds via crystallization theory”, Topology Appl., 144 (2004), 201–209 | DOI | MR | Zbl
[24] A. Cattabriga, M. Mulazzani, A. Vesnin, “Complexity, Heegaard diagrams and generalized Dunwoody manifolds”, J. Korean Math. Soc., 47:3 (2010), 585–599 | DOI | MR | Zbl
[25] P. Cristofori, T. Kozlovskaya, A. Vesnin, Cyclis generalizations of two hyperbolic icosahedral manifolds, preprint, arXiv: 1110.3134
[26] M.J. Dunwoody, “Cyclic presentations and 3-manifolds”, Proc. Inter. Conf., Groups-Korea '94, Walter de Gruyter, Berlin–New York, 1995, 47–55 | MR | Zbl
[27] D. Epstein, R. Penner, “Euclidean decompositions of noncompact hyperbolic manifolds”, J. Diff. Geom., 27 (1988), 67–80 | MR | Zbl
[28] M. Ferri, C. Gagliardi, L. Grasselli, “A graph-theoretical representation of PL-manifolds—a survey on crystallizations”, Aeq. Math., 31 (1986), 121–141 | DOI | MR | Zbl
[29] E. Fominykh, M. Ovchinnikov, “On the complexity of graph-manifolds”, Sib. elektron. matem. izv., 2 (2005), 190–191 | MR | Zbl
[30] R. Frigerio, B. Martelli, C. Petronio, “Complexity and Heegaard genus of an infinite class of compact 3-manifolds”, Pacific J. Math., 210:2 (2003), 283–297 | DOI | MR | Zbl
[31] R. Frigerio, B. Martelli, C. Petronio, “Dehn filling of cusped hyperbolic 3-manifolds with geodesic boundary”, J. Diff. Geom., 64:3 (2003), 425–455 | MR | Zbl
[32] R. Frigerio, B. Martelli, C. Petronio, “Small hyperbolic 3-manifolds with geodesic boundary”, Exp. Math., 13:2 (2004), 171–184 | MR | Zbl
[33] M. Fujii, “Hyperbolic 3-manifolds with totally geodesic boundary which are decomposed into hyperbolic truncated tetrahedra”, Tokyo J. Math., 13 (1990), 353–373 | DOI | MR | Zbl
[34] W. Jaco, H. Rubinstein, S. Tillmann, “Minimal triangulations for an infinite family of lens spaces”, J. Topology, 2:1 (2009), 157–180 | DOI | MR | Zbl
[35] W. Jaco, H. Rubinstein, S. Tillmann, “Coverings and minimal triangulations of 3–manifolds”, Algebr. Geom. Topol., 11:3 (2011), 1257–1265 | DOI | MR | Zbl
[36] D. Gabai, R. Meyerhoff, P. Milley, “Minimum volume cusped hyperbolic three-manifolds”, J. Amer. Math. Soc., 22:4 (2009), 1157–-1215 | DOI | MR | Zbl
[37] L. Grasselli, M. Mulazzani, “Genus one 1-bridge knots and Dunwoody manifolds”, Forum Math., 13 (2001), 379–397 | DOI | MR | Zbl
[38] H. Helling, A.C. Kim, J.L. Mennicke, “A geometric study of Fibonacci groups”, J. Lie Theory, 8 (1999), 1–23 | MR
[39] H.M. Hilden, M.T. Lozano, J.M. Montesinos-Amilibia, “The arithmeticity of the figure eight knot orbifolds”, Topology'90, Columbus, 1990, de Gruyter, Berlin, 1992, 169–183 | MR
[40] A. Kawauchi, A Survey of Knot Theory, Birkhäuser, Basel, 1996 | MR | Zbl
[41] S. Kojima, Y. Miyamoto, “The smallest hyperbolic 3-manifolds with totally geodesic boundary”, J. Diff. Geom., 34:1 (1991), 175–192 | MR | Zbl
[42] B. Martelli, C. Petronio, “Complexity of geometric 3-manifolds”, Geom. Dedicata, 108 (2004), 15–69 | DOI | MR | Zbl
[43] S. Matveev, “Complexity theory of three-dimensional manifolds”, Acta Appl. Math., 19 (1990), 101–130 | MR | Zbl
[44] S. Matveev, C. Petronio, A. Vesnin, “Two-sided asymptotic bounds for the complexity of some closed hyperbolic three-manifolds”, J. Aus. Math. Soc., 86:2 (2009), 205–219 | DOI | MR | Zbl
[45] A. Mednykh, A. Vesnin, “Covering properties of small volume hyperbolic 3-manifolds”, J. Knot Theory Ram., 7:3 (1998), 381–392 | DOI | MR | Zbl
[46] J. Minkus, “The branched cyclic coverings of 2-bridge knots and links”, Mem. Amer. Math. Soc., 35, no. 255, 1982 | MR
[47] M. Mulazzani, A. Vesnin, “The many faces of cyclic branched coverings of 2-bridge knots and links”, Atti Sem. Mat. Fis. Univ. Modena, 40, Suppl. (2001), 177–215 | MR
[48] M. Mulazzani, A. Vesnin, “Generalized Takahashi manifolds”, Osaka Math. J., 39:3 (2002), 705–721 | MR | Zbl
[49] L. Neuwirth, “An algorithm for the construction of 3-manifolds from 2-complexes”, Proc. Camb. Phil. Soc., 64 (1968), 603–613 | DOI | MR | Zbl
[50] L. Paoluzzi, B. Zimmermann, “On a class of hyperbolic 3-manifolds and groups with one defining relation”, Geom. Dedicata, 60 (1996), 113–123 | DOI | MR | Zbl
[51] C. Petronio, A. Vesnin, “Two-sided asymptotic bounds for the complexity of cyclic branched coverings of two-bridge links”, Osaka Math. J., 46:4 (2009), 1077–1095 | MR | Zbl
[52] B. Ruini, F. Spaggiari, A. Vesnin, “On spines of Seifert fibered manifolds”, Aeq. Math., 65 (2003), 40–60 | MR | Zbl
[53] W. Thurston, Three dimensional geometry and topology, Princeton Math. Ser., 35, Princeton University Press, 1997 | MR | Zbl
[54] B. Zimmermann, “Determining knots and links by cyclic branched coverings”, Geom. Dedicata, 66 (1997), 149–157 | DOI | MR | Zbl