Optimal system of subalgebras admitted by the gas dynamics equations in case of state equation with separated density
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 19-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the gas dynamics equations with the state equation of separated density. The optimal system of subalgebras for a $12$-dimensional Lie algebra admitted by the gas dynamics equations is given. We use the decomposition of a $12$-dimensional Lie algebra to the semidirect sum of a $6$-dimensional Abelian ideal and a $6$-dimensional subalgebra to construct the optimal system. On the first step we construct the optimal system of projections on $6$ dimensional subalgebra. Then the projections are complemented with elements from Abelian ideal. We propose the compact notation of the optimal system of subalgebras for $12$-dimensional Lie algebra which is constructed with the help of the optimal system for $6$-dimensional subalgebra.
Mots-clés : optimal system of subalgebras
Keywords: gas dynamics equations, state equation of the separated density.
@article{SEMR_2011_8_a2,
     author = {E. V. Makarevich},
     title = {Optimal system of subalgebras admitted by the gas dynamics equations in case of state equation with separated density},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {19--38},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a2/}
}
TY  - JOUR
AU  - E. V. Makarevich
TI  - Optimal system of subalgebras admitted by the gas dynamics equations in case of state equation with separated density
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 19
EP  - 38
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a2/
LA  - ru
ID  - SEMR_2011_8_a2
ER  - 
%0 Journal Article
%A E. V. Makarevich
%T Optimal system of subalgebras admitted by the gas dynamics equations in case of state equation with separated density
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 19-38
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a2/
%G ru
%F SEMR_2011_8_a2
E. V. Makarevich. Optimal system of subalgebras admitted by the gas dynamics equations in case of state equation with separated density. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 19-38. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a2/

[1] L. V. Ovsyannikov, “Programma podmodeli. Gazovaya dinamika”, Prikladnaya matematika i mekhanika, 58:4 (1994), 30–55 | MR | Zbl

[2] S. V. Golovin, Optimalnaya sistema podalgebr dlya algebry Li operatorov, dopuskaemykh uravneniyami gazovoi dinamiki v sluchae politropnogo gaza, Preprint No 5-96, RAN, Sibirskoe otdelenie, Institut gidrodinamiki, Novosibirsk, 1996

[3] A. A. Cherevko, Optimalnaya sistema podalgebr dlya algebry Li operatorov, dopuskaemykh sistemoi uravnenii gazovoi dinamiki s uravneniem sostoyaniya $p=f(S)\rho^{5/3}$, Preprint No 4-96, RAN, Sibirskoe otdelenie, Institut gidrodinamiki, Novosibirsk, 1996

[4] S. V. Khabirov, Optimalnye sistemy podalgebr, dopuskaemykh uravneniyami gazovoi dinamiki, Preprint instituta mekhaniki UNTs RAN, Ufa, 1998 | MR

[5] S. V. Khabirov, “Optimal systems of symmetry subalgebras for big models of gasdynamics”, Journal of the south African Mathematical Society, 24:2 (2001), 133–146 | MR | Zbl