On some properties of ring varieties, where isomorphic zero-divisor graphs of finite rings give isomorhic rings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 179-190

Voir la notice de l'article provenant de la source Math-Net.Ru

Denote by $\Gamma(R)$ the zero-divisor graph of an associative ring $R$. In this paper, we study varieties of associative rings, where an isomorphism of $\Gamma(R)$ and $\Gamma(S)$ implies an isomorphism of the rings $R$ and $S$ for any finite rings $R$$S$.
Keywords: zero-divisor graph, variety of associative rings, finite ring.
@article{SEMR_2011_8_a15,
     author = {A. S. Kuz'mina},
     title = {On some properties of ring varieties, where isomorphic zero-divisor graphs of finite rings give  isomorhic rings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {179--190},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a15/}
}
TY  - JOUR
AU  - A. S. Kuz'mina
TI  - On some properties of ring varieties, where isomorphic zero-divisor graphs of finite rings give  isomorhic rings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 179
EP  - 190
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a15/
LA  - ru
ID  - SEMR_2011_8_a15
ER  - 
%0 Journal Article
%A A. S. Kuz'mina
%T On some properties of ring varieties, where isomorphic zero-divisor graphs of finite rings give  isomorhic rings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 179-190
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a15/
%G ru
%F SEMR_2011_8_a15
A. S. Kuz'mina. On some properties of ring varieties, where isomorphic zero-divisor graphs of finite rings give  isomorhic rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 179-190. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a15/