On some properties of ring varieties, where isomorphic zero-divisor graphs of finite rings give isomorhic rings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 179-190.

Voir la notice de l'article provenant de la source Math-Net.Ru

Denote by $\Gamma(R)$ the zero-divisor graph of an associative ring $R$. In this paper, we study varieties of associative rings, where an isomorphism of $\Gamma(R)$ and $\Gamma(S)$ implies an isomorphism of the rings $R$ and $S$ for any finite rings $R$$S$.
Keywords: zero-divisor graph, variety of associative rings, finite ring.
@article{SEMR_2011_8_a15,
     author = {A. S. Kuz'mina},
     title = {On some properties of ring varieties, where isomorphic zero-divisor graphs of finite rings give  isomorhic rings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {179--190},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a15/}
}
TY  - JOUR
AU  - A. S. Kuz'mina
TI  - On some properties of ring varieties, where isomorphic zero-divisor graphs of finite rings give  isomorhic rings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 179
EP  - 190
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a15/
LA  - ru
ID  - SEMR_2011_8_a15
ER  - 
%0 Journal Article
%A A. S. Kuz'mina
%T On some properties of ring varieties, where isomorphic zero-divisor graphs of finite rings give  isomorhic rings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 179-190
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a15/
%G ru
%F SEMR_2011_8_a15
A. S. Kuz'mina. On some properties of ring varieties, where isomorphic zero-divisor graphs of finite rings give  isomorhic rings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 179-190. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a15/

[1] Akbari S., Mohammadian A., “On the zero-divisor graph of a commutative ring”, Journal of Algebra, 274 (2004), 847–855 | DOI | MR | Zbl

[2] Akbari S., Mohammadian A., “On zero-divisor graphs of finite rings”, Journal of Algebra, 314 (2007), 168–184 | DOI | MR | Zbl

[3] Anderson D.F., Livingston P.S., “The Zero-Divisor Graph of a Commutative Ring”, Journal of Algebra, 217 (1999), 434–447 | DOI | MR | Zbl

[4] Beck I., “Coloring of Commutative Rings”, Journal of Algebra, 116 (1988), 208–226 | DOI | MR | Zbl

[5] Redmond S.P., “The zero-divisor graph of a noncommutative ring”, Int. J. Commut. rings, 1:4 (2002), 203–211

[6] Rowen L.H., Polynomial Identities in Ring Theory, Academic Press, 1980 | MR | Zbl

[7] Tarski A., “Equationally complete rings and relation algebras”, Indag. Math., 18 (1956), 39–46 | MR

[8] Andrunakievich V.A., Ryabukhin Yu.M., Radikaly algebr i strukturnaya teoriya, Nauka, Moskva, 1979 | MR

[9] Dzhekobson N., Stroenie kolets, Izd-vo inostr. literatury, Moskva, 1961 | MR

[10] Elizarov V.P., Konechnye koltsa, Gelios ARV, Moskva, 2006

[11] Kuzmina A.S., “Opisanie konechnykh nenilpotentnykh kolets, imeyuschikh planarnye grafy delitelei nulya”, Diskretnaya matematika, 21:4 (2009), 60–75 | MR

[12] Lvov I.V., “O mnogoobraziya assotsiativnykh kolets I”, Algebra i logika, 12:3 (1973), 269–297 | MR