Poisson free motions and multidimensional Vinograd attractors
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 123-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete description is presented of the topology of the limit sets of Poisson free motions in Euclidean spaces.
Keywords: trajectories and limit points, Vinograd attractors, Jordan–Brouwer Separation Theorem.
Mots-clés : Poisson free motions
@article{SEMR_2011_8_a10,
     author = {V. V. Ivanov},
     title = {Poisson free motions and multidimensional {Vinograd} attractors},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {123--126},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a10/}
}
TY  - JOUR
AU  - V. V. Ivanov
TI  - Poisson free motions and multidimensional Vinograd attractors
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 123
EP  - 126
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a10/
LA  - ru
ID  - SEMR_2011_8_a10
ER  - 
%0 Journal Article
%A V. V. Ivanov
%T Poisson free motions and multidimensional Vinograd attractors
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 123-126
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a10/
%G ru
%F SEMR_2011_8_a10
V. V. Ivanov. Poisson free motions and multidimensional Vinograd attractors. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 123-126. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a10/

[1] R. E. Vinograd, “O predelnom povedenii neogranichennoi integralnoi krivoi”, Matematika, v. 5, Uch. zap. MGU, 155, 1952, 94–136 ; Докл. АН СССР, сер. мат., 66:1 (1949), 5–8 | MR | MR | Zbl

[2] M. V. Fokin, “O predelnykh mnozhestvakh traektorii dinamicheskikh sistem gradientnogo tipa”, Matem. sb., 116(158):4(12) (1981), 502–514 | MR | Zbl

[3] K. Karateodori, Konformnoe otobrazhenie, ONTI GTTI, M.-L., 1934

[4] A. Dold, Lektsii po algebraicheskoi topologii, Mir, M., 1976 | MR