On automorphisms of a~strongly regular graph $(245,64,18,16)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 4-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

It was proved that a strongly regular graph in which neighborhoods of vertices are pseudogeometric graphs for $GQ(3,5)$ has the parameters $(245,64,18,16)$. In this paper we found the possible orders and the structures of subgraphs of the fixed points of automorphisms of a strongly regular graph with parameters $(245,64,18,16)$.
Keywords: automorphisms, strongly regular graph.
@article{SEMR_2011_8_a1,
     author = {A. K. Gutnova},
     title = {On automorphisms of a~strongly regular graph $(245,64,18,16)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {4--18},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a1/}
}
TY  - JOUR
AU  - A. K. Gutnova
TI  - On automorphisms of a~strongly regular graph $(245,64,18,16)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 4
EP  - 18
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a1/
LA  - ru
ID  - SEMR_2011_8_a1
ER  - 
%0 Journal Article
%A A. K. Gutnova
%T On automorphisms of a~strongly regular graph $(245,64,18,16)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 4-18
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a1/
%G ru
%F SEMR_2011_8_a1
A. K. Gutnova. On automorphisms of a~strongly regular graph $(245,64,18,16)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 4-18. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a1/

[1] Gutnova A. K., Makhnev A. A., “Grafy, v kotorykh okrestnosti vershin — psevdogeometricheskie grafy dlya $GQ(3,5)$”, Teoriya grupp i ee prilozheniya. Trudy vosmoi Mezhdunarodnoi shkoly-konferentsii po teorii grupp (Nalchik 2010), 70–76

[2] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[3] Makhnev A. A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskr. analiz i issled. operatsii, 3:3 (1996), 71–83 | MR | Zbl

[4] Cameron P., Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, 1999 | MR | Zbl

[5] Gavrilyuk A. L., Makhnev A. A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Doklady akademii nauk, 432:5 (2010), 512–515

[6] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311 (2011), 132–144 | DOI | Zbl