On $2$-groups, all of whose finite subgroups are of nilpotency class~$2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 1-3.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if all finite subgroups of a $2$-group $G$ are of nilpotency class $2$ then $G$ is of nilpotency class $2$.
Keywords: nilpotent group.
Mots-clés : $p$-group
@article{SEMR_2011_8_a0,
     author = {D. V. Lytkina},
     title = {On $2$-groups, all of whose finite subgroups are of nilpotency class~$2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--3},
     publisher = {mathdoc},
     volume = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a0/}
}
TY  - JOUR
AU  - D. V. Lytkina
TI  - On $2$-groups, all of whose finite subgroups are of nilpotency class~$2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2011
SP  - 1
EP  - 3
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2011_8_a0/
LA  - en
ID  - SEMR_2011_8_a0
ER  - 
%0 Journal Article
%A D. V. Lytkina
%T On $2$-groups, all of whose finite subgroups are of nilpotency class~$2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2011
%P 1-3
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2011_8_a0/
%G en
%F SEMR_2011_8_a0
D. V. Lytkina. On $2$-groups, all of whose finite subgroups are of nilpotency class~$2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 1-3. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a0/

[1] S. I. Adian, The Burnside Problem and Identities in Groups, Springer-Verlag, Berlin, Heidelberg, New York, 1979 | MR

[2] I. G. Lysenok, “Infinite Burnside groups of even exponent”, Izvestiya: Mathematics, 60:3 (1996), 453–654 | DOI | MR | Zbl

[3] Groups, algorithms and programming, http://www.gap-system.org.