On $2$-groups, all of whose finite subgroups are of nilpotency class $2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 1-3
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that if all finite subgroups of a $2$-group $G$ are of nilpotency class $2$ then $G$ is of nilpotency class $2$.
Keywords:
nilpotent group.
Mots-clés : $p$-group
Mots-clés : $p$-group
@article{SEMR_2011_8_a0,
author = {D. V. Lytkina},
title = {On $2$-groups, all of whose finite subgroups are of nilpotency class~$2$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1--3},
year = {2011},
volume = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2011_8_a0/}
}
D. V. Lytkina. On $2$-groups, all of whose finite subgroups are of nilpotency class $2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 8 (2011), pp. 1-3. http://geodesic.mathdoc.fr/item/SEMR_2011_8_a0/
[1] S. I. Adian, The Burnside Problem and Identities in Groups, Springer-Verlag, Berlin, Heidelberg, New York, 1979 | MR
[2] I. G. Lysenok, “Infinite Burnside groups of even exponent”, Izvestiya: Mathematics, 60:3 (1996), 453–654 | DOI | MR | Zbl
[3] Groups, algorithms and programming, http://www.gap-system.org.