Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2010_7_a4, author = {S. A. Gritsenko}, title = {Homogenization in the problems of nonlinear diffusion}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {52--64}, publisher = {mathdoc}, volume = {7}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a4/} }
S. A. Gritsenko. Homogenization in the problems of nonlinear diffusion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 52-64. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a4/
[1] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl
[2] A. M. Meirmanov, “Metod dvukhmasshtabnoi skhodimosti Nguetsenga v zadachakh filtratsii i seismoakustiki v uprugikh poristykh sredakh”, Sibirskii matematicheskii zhurnal, 48:3 (2007), 645–667 | MR | Zbl
[3] S. A. Gritsenko, R. N. Zimin, “Ob odnoi vspomogatelnoi zadache nelineinoi diffuzii v slaboszhimaemoi vyazkoi zhidkosti”, Nauchnye vedomosti BelGU, seriya fizika matematika (to appear)
[4] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR
[5] S. A. Gritsenko, “O diffuzii i medlennoi konvektsii primesi v slaboszhimaemoi vyazkoi zhidkosti”, Izvestiya Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:2 (2009), 19–24