Solvability of the Initial–Boundary Value Cauchy Problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 487-490
Cet article a éte moissonné depuis la source Math-Net.Ru
A solvability criterion is given to the Cauchy problem for a system of differential equations in a many-dimensional closed orthant.
Keywords:
Cauchy problem, Peano theorem.
Mots-clés : Euler polygonal line
Mots-clés : Euler polygonal line
@article{SEMR_2010_7_a38,
author = {V. V. Ivanov},
title = {Solvability of the {Initial{\textendash}Boundary} {Value} {Cauchy} {Problem}},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {487--490},
year = {2010},
volume = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a38/}
}
V. V. Ivanov. Solvability of the Initial–Boundary Value Cauchy Problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 487-490. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a38/
[1] I. G. Petrovskii, Lektsii po teorii obyknovennykh differentsialnykh uravnenii, «Nauka», Moskva, 1970 | MR
[2] Dzh. Marri, Nelineinye differentsialnye uravneniya v biologii. Lektsii o modelyakh, «Mir», Moskva, 1983
[3] V. A. Likhoshvai, Yu. G. Matushkin, S. I. Fadeev, “Zadachi teorii funktsionirovaniya gennykh setei”, Sib. zhurn. industrialnoi matematiki, 6:2 (2003), 64–80 | MR
[4] V. I. Opoitsev, Ravnovesie i ustoichivost v modelyakh kollektivnogo povedeniya, «Nauka», Moskva, 1977 | MR