Solvability of the Initial--Boundary Value Cauchy Problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 487-490.

Voir la notice de l'article provenant de la source Math-Net.Ru

A solvability criterion is given to the Cauchy problem for a system of differential equations in a many-dimensional closed orthant.
Keywords: Cauchy problem, Peano theorem.
Mots-clés : Euler polygonal line
@article{SEMR_2010_7_a38,
     author = {V. V. Ivanov},
     title = {Solvability of the {Initial--Boundary} {Value} {Cauchy} {Problem}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {487--490},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a38/}
}
TY  - JOUR
AU  - V. V. Ivanov
TI  - Solvability of the Initial--Boundary Value Cauchy Problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 487
EP  - 490
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a38/
LA  - ru
ID  - SEMR_2010_7_a38
ER  - 
%0 Journal Article
%A V. V. Ivanov
%T Solvability of the Initial--Boundary Value Cauchy Problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 487-490
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a38/
%G ru
%F SEMR_2010_7_a38
V. V. Ivanov. Solvability of the Initial--Boundary Value Cauchy Problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 487-490. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a38/

[1] I. G. Petrovskii, Lektsii po teorii obyknovennykh differentsialnykh uravnenii, «Nauka», Moskva, 1970 | MR

[2] Dzh. Marri, Nelineinye differentsialnye uravneniya v biologii. Lektsii o modelyakh, «Mir», Moskva, 1983

[3] V. A. Likhoshvai, Yu. G. Matushkin, S. I. Fadeev, “Zadachi teorii funktsionirovaniya gennykh setei”, Sib. zhurn. industrialnoi matematiki, 6:2 (2003), 64–80 | MR

[4] V. I. Opoitsev, Ravnovesie i ustoichivost v modelyakh kollektivnogo povedeniya, «Nauka», Moskva, 1977 | MR