Dynamical contours and limits of stable autonomous motions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 162-165
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that every dynamical contour can serve as the dynamical limit of a Lyapunov stable motion of an autonomous system. If the contour consists entirely of stationary points, the contour can be the limit of an asymptotically stable motion.
Keywords:
autonomous systems, $\omega$-limit points, Lyapunov stability, asymptotic stability
Mots-clés : dynamical contours, synchronous serpentine.
Mots-clés : dynamical contours, synchronous serpentine.
@article{SEMR_2010_7_a35,
author = {E. P. Volokitin and V. V. Ivanov and V. M. Cheresiz},
title = {Dynamical contours and limits of stable autonomous motions},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {162--165},
year = {2010},
volume = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a35/}
}
TY - JOUR AU - E. P. Volokitin AU - V. V. Ivanov AU - V. M. Cheresiz TI - Dynamical contours and limits of stable autonomous motions JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2010 SP - 162 EP - 165 VL - 7 UR - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a35/ LA - ru ID - SEMR_2010_7_a35 ER -
E. P. Volokitin; V. V. Ivanov; V. M. Cheresiz. Dynamical contours and limits of stable autonomous motions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 162-165. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a35/
[1] O. V. Druzhinina, Metody analiza ustoichivosti i dinamicheskoi prochnosti traektorii nelineinykh differentsialnykh sistem, VTs RAN, Moskva, 2008, 200 pp. | MR