Dynamical contours and limits of stable autonomous motions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 162-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that every dynamical contour can serve as the dynamical limit of a Lyapunov stable motion of an autonomous system. If the contour consists entirely of stationary points, the contour can be the limit of an asymptotically stable motion.
Keywords: autonomous systems, $\omega$-limit points, Lyapunov stability, asymptotic stability
Mots-clés : dynamical contours, synchronous serpentine.
@article{SEMR_2010_7_a35,
     author = {E. P. Volokitin and V. V. Ivanov and V. M. Cheresiz},
     title = {Dynamical contours and limits of stable autonomous motions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {162--165},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a35/}
}
TY  - JOUR
AU  - E. P. Volokitin
AU  - V. V. Ivanov
AU  - V. M. Cheresiz
TI  - Dynamical contours and limits of stable autonomous motions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 162
EP  - 165
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a35/
LA  - ru
ID  - SEMR_2010_7_a35
ER  - 
%0 Journal Article
%A E. P. Volokitin
%A V. V. Ivanov
%A V. M. Cheresiz
%T Dynamical contours and limits of stable autonomous motions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 162-165
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a35/
%G ru
%F SEMR_2010_7_a35
E. P. Volokitin; V. V. Ivanov; V. M. Cheresiz. Dynamical contours and limits of stable autonomous motions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 162-165. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a35/

[1] O. V. Druzhinina, Metody analiza ustoichivosti i dinamicheskoi prochnosti traektorii nelineinykh differentsialnykh sistem, VTs RAN, Moskva, 2008, 200 pp. | MR