On intersections Sylov subgroups in finite groups,~II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 42-51

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite groups with simple socle $K$ are considered, where $K$ is exeptional group of Lee type over field of order $3$. For Sylov $2$-subgroup $S$ let $l_2(G)$ be a number of $S$-orbits on the set $X=\{S^g\mid S\cap S^g=1,g\in G\}$. It is proved that $l_2(G)\ge3$.
Keywords: intersections
Mots-clés : simple group.
@article{SEMR_2010_7_a3,
     author = {V. I. Zenkov},
     title = {On intersections {Sylov} subgroups in finite {groups,~II}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {42--51},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a3/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - On intersections Sylov subgroups in finite groups,~II
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 42
EP  - 51
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a3/
LA  - ru
ID  - SEMR_2010_7_a3
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T On intersections Sylov subgroups in finite groups,~II
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 42-51
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a3/
%G ru
%F SEMR_2010_7_a3
V. I. Zenkov. On intersections Sylov subgroups in finite groups,~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 42-51. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a3/