The temporal logic of inductive frames with linear time
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 445-457.

Voir la notice de l'article provenant de la source Math-Net.Ru

The polymodal decidable calculus in temporal language with four modalities is found which is complete with respect to the class of $Ind$-frames with linear time. It is proved that it is finite approximated by the class of finite $Ind$-frames with linear time.
Keywords: temporal logic, Kripke frames, axiomatization, finite model property.
@article{SEMR_2010_7_a28,
     author = {V. F. Yun},
     title = {The temporal logic of inductive frames with linear time},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {445--457},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a28/}
}
TY  - JOUR
AU  - V. F. Yun
TI  - The temporal logic of inductive frames with linear time
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 445
EP  - 457
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a28/
LA  - ru
ID  - SEMR_2010_7_a28
ER  - 
%0 Journal Article
%A V. F. Yun
%T The temporal logic of inductive frames with linear time
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 445-457
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a28/
%G ru
%F SEMR_2010_7_a28
V. F. Yun. The temporal logic of inductive frames with linear time. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 445-457. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a28/

[1] V. F. Yun, “Vremennaya logika lineinykh po vremeni freimov s aksiomoi induktsii”, SEMI, 6 (2009), 312–325 | MR

[2] A. Chagrov, M. Zakharyaschev, Modal logics, Oxford Logic Guides, 35, Clarendon Press, Oxford, 1977

[3] D. Gabbay, I. Hodkinson, M. Reynolds, Temporal logic, Oxford University Press, 1994 | MR

[4] V. Rybakov, “Discrete linear temporal logic with current time point clasters, deciding algorithms”, Logic and Logic Philosophy, 17:1–2 (2008) | MR | Zbl