The theory of fractional differential equation of the oscillatory type with attenuating part
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 284-339

Voir la notice de l'article provenant de la source Math-Net.Ru

General solution of the Cauchy problem for the class of fractional differential equations of the oscillatory type with attenuating part in the operator field of relations is found in the paper. For new generalized function of the Mittag-Leffler type with the help of which the general solution is represented a series of basic properties is being proved. Formal examples of the equation theory application in some generalized problems of theoretical mechanics such as motion of mathematical pendulum, motion of spherical pendulum, motion of heavy symmetric top with fixed low point and the Foucault pendulum theory are given.
Keywords: equation of oscillator, function of the Mittag-Leffler, pendulum.
@article{SEMR_2010_7_a20,
     author = {K. K. Kazbekov},
     title = {The theory of fractional differential equation of the oscillatory type with attenuating part},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {284--339},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a20/}
}
TY  - JOUR
AU  - K. K. Kazbekov
TI  - The theory of fractional differential equation of the oscillatory type with attenuating part
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 284
EP  - 339
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a20/
LA  - ru
ID  - SEMR_2010_7_a20
ER  - 
%0 Journal Article
%A K. K. Kazbekov
%T The theory of fractional differential equation of the oscillatory type with attenuating part
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 284-339
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a20/
%G ru
%F SEMR_2010_7_a20
K. K. Kazbekov. The theory of fractional differential equation of the oscillatory type with attenuating part. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 284-339. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a20/