The theory of fractional differential equation of the oscillatory type with attenuating part
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 284-339.

Voir la notice de l'article provenant de la source Math-Net.Ru

General solution of the Cauchy problem for the class of fractional differential equations of the oscillatory type with attenuating part in the operator field of relations is found in the paper. For new generalized function of the Mittag-Leffler type with the help of which the general solution is represented a series of basic properties is being proved. Formal examples of the equation theory application in some generalized problems of theoretical mechanics such as motion of mathematical pendulum, motion of spherical pendulum, motion of heavy symmetric top with fixed low point and the Foucault pendulum theory are given.
Keywords: equation of oscillator, function of the Mittag-Leffler, pendulum.
@article{SEMR_2010_7_a20,
     author = {K. K. Kazbekov},
     title = {The theory of fractional differential equation of the oscillatory type with attenuating part},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {284--339},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a20/}
}
TY  - JOUR
AU  - K. K. Kazbekov
TI  - The theory of fractional differential equation of the oscillatory type with attenuating part
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 284
EP  - 339
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a20/
LA  - ru
ID  - SEMR_2010_7_a20
ER  - 
%0 Journal Article
%A K. K. Kazbekov
%T The theory of fractional differential equation of the oscillatory type with attenuating part
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 284-339
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a20/
%G ru
%F SEMR_2010_7_a20
K. K. Kazbekov. The theory of fractional differential equation of the oscillatory type with attenuating part. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 284-339. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a20/

[1] L. D. Landau, E. M. Lifshits, Mekhanika, Nauka, Moskva, 1965 | MR

[2] P. Appel, Teoreticheskaya mekhanika, v. 1, Fizmatgiz, Moskva, 1960

[3] E. L. Nikolai, Teoreticheskaya mekhanika, Chast 2, Fizmatgiz, Moskva, 1958

[4] N. N. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, Moskva, 1970 | MR | Zbl

[5] G. M. Finkelshtein, Kurs teoreticheskoi mekhaniki, Uchpedgiz, Moskva, 1958

[6] E. A. Mudretsova, K. E. Veselov, Gravirazvedka: Spravochnik geofizika, Nedra, Moskva, 1990

[7] N. P. Grushinskii, N. B. Sazhina, Gravitatsionnaya razvedka, Nedra, Moskva, 1972

[8] I. A. Gusev, Mayatnikovyi kompleks “AGAT”: Rezultaty vysokotochnykh mayatnikovykh izmerenii, Sovetskoe radio, Moskva, 1977, 57–71

[9] N. N. Bukhgolts, Osnovnoi kurs teoreticheskoi mekhaniki, v. 1, Nauka, Moskva, 1967

[10] V. I.Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, Moskva, 1989 | MR

[11] M. I. Bat, G. Yu. Dzhanelidze, A. S. Kelzon, Teoreticheskaya mekhanika v primerakh i zadachakh, v. 2, Nauka, Moskva, 1991 | Zbl

[12] E. L. Nikolai, Teoriya giroskopov, OGIZTTL, Moskva, 1948

[13] P. Appel, Teoreticheskaya mekhanika, v. 2, Fizmatlit, Moskva, 1960

[14] K. K. Kazbekov, “Operatornoe reshenie dlya odnogo klassa differentsialnykh uravnenii drobnogo poryadka”, Vladikavkazskii matematicheskii zhurnal, 8:3 (2006), 16–28 | MR

[15] Ya. Mikusinskii, Operatornoe ischislenie, IL, Moskva, 1956

[16] V. A. Ditkin, “Operatsionnoe ischislenie”, Uspekhi mat. nauk, 2:6(22) (1947), 72–158 | MR

[17] V. A. Ditkin, “K teorii operatsionnogo ischisleniya”, Doklady AN SSSR, 116 (1957), 15–17 | MR | Zbl

[18] V. A. Ditkin, “K teorii operatsionnogo ischisleniya”, Doklady AN SSSR, 123 (1958), 395–396 | MR | Zbl

[19] V. A. Ditkin, A. P. Prudnikov, Operatsionnoe ischislenie, Vysshaya shkola, Moskva, 1975

[20] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[21] M. M. Dzharbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, Moskva, 1966

[22] L. S. Pontryagin, Obyknovennye differentsialnye uravneniya, Nauka, Moskva, 1974 | MR

[23] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, Nauka, Moskva, 1979 | MR

[24] M. M. Dzharbashyan, “Ob integralnykh preobrazovaniyakh, porozhdennykh obobschennoi funktsiei tipa Mittag-Lefflera”, Izv. Akad. Nauk Arm. SSR, fiz.-mat. nauki, 13:3 (1960), 21–63 | MR

[25] A. O. Gelfond, Vychety i ikh prilozheniya, KomKniga, Moskva, 2006

[26] M. A. Evgrafov, Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, K. A. Bezhanov, Sbornik zadach po teorii analiticheskikh funktsii, Nauka, Moskva, 1969 | MR