On the exact estimations of the best $M$--terms approximation of the Besov class
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 255-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

The anisotropic Lebesgue space of periodic functions is considered in this paper. The exact estimate of the $M$-term of approximation function O. V. Besov's classes in the space Lebesgue with anisotropic metric is obtained in the paper.
Mots-clés : Lebesgue space, Besov's classes
Keywords: anisotropic metric.
@article{SEMR_2010_7_a18,
     author = {G. A. Akishev},
     title = {On the exact estimations of the best $M$--terms approximation of the {Besov} class},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {255--274},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a18/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - On the exact estimations of the best $M$--terms approximation of the Besov class
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 255
EP  - 274
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a18/
LA  - ru
ID  - SEMR_2010_7_a18
ER  - 
%0 Journal Article
%A G. A. Akishev
%T On the exact estimations of the best $M$--terms approximation of the Besov class
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 255-274
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a18/
%G ru
%F SEMR_2010_7_a18
G. A. Akishev. On the exact estimations of the best $M$--terms approximation of the Besov class. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 255-274. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a18/

[1] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[2] T. I. Amanov, Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka, Alma-Ata, 1976 | MR

[3] S. B. Stechkin, “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Doklady AN SSSR, 102 (1955), 37–40 | Zbl

[4] R. S. Ismagilov, “Poperechniki mnozhestv v lineinykh normirovannykh prostranstvakh i priblizhenie funktsii trigonometricheskimi mnogochlenami”, Uspekhi Matematicheskikh Nauk, 29 (1974), 161–173 | MR

[5] V. E. Maiorov, “O lineinykh poperechnikakh sobolevskikh klassov”, Doklady AN SSSR, 243 (1978), 1127–1130 | MR | Zbl

[6] E. S. Belinskii, “Priblizhenie “plavayuschei” sistemoi eksponent na klassakh periodicheskikh funktsii s ogranichennoi smeshannoi proizvodnoi”, Issled. po teorii funkts. mnogikh veschestv. peremennykh, Yaroslavl, 1988, 16–33 | MR

[7] V. N. Temlyakov, “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Trudy Matematicheskogo Instituta AN SSSR, 178, 1986, 3–112 | MR

[8] A. S. Romanyuk, “Nailuchshie $M$-chlennye trigonometricheskie priblizheniya klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Izvestiya Rossiiskoi Akademii Nauk, seriya matematicheskaya, 67 (2003), 61–100 | MR | Zbl

[9] A. S. Romanyuk, “Priblizhenie klassov periodicheskikh funktsii mnogikh peremennykh”, Matematicheskie Zametki, 71 (2002), 109–121 | MR | Zbl

[10] R. A. DeVore, V. N. Temlyakov, “Nonlinear approximation by trigonometric sums”, Journal of Fourier Analysis and Applications, 2 (1995), 29–48 | DOI | MR | Zbl

[11] V. N. Temlyakov, “Greedy algoritm and $m$-term trigonometric approximation”, Constructive Approximation, 14 (1998), 569–587 | DOI | MR | Zbl

[12] B. S. Kashin, V. N. Temlyakov, “O nailuchshikh $M$-chlennykh priblizheniyakh i entropii mnozhestv v prostranstvakh $L^1$”, Matematicheskie Zametki, 56 (1994), 57–86 | MR | Zbl

[13] B. S. Kashin, “Approksimativnykh svoistvakh polnykh ortonormirovannykh sistem”, Trudy Matematicheskogo Instituta AN SSSR, 172, 1985, 187–201 | MR

[14] D. B. Bazarkhanov, “Otsenki nekotorykh approksimativnykh kharakteristik prostranstv Nikolskogo–Besova obobschennoi smeshannoi gladkosti”, Doklady Rossiiskoi Akademii Nauk, 426 (2009), 11–14 | MR | Zbl

[15] R. A. DeVore, “Nonlinear approximation”, Acta Numerica, 7 (1998), 51–150 | DOI | MR | Zbl

[16] V. N. Temlyakov, “Nonlinear methods approximation”, Foundations Computational Mathematics, 3 (2003), 33–107 | DOI | MR | Zbl

[17] G. Akishev, “O poryadkakh priblizheniya funktsionalnykh klassov v prostranstve Lorentsa s anizotropnoi normoi”, Matematicheskie Zametki, 81 (2007), 3–16 | MR | Zbl

[18] G. Akishev, “O poryadkakh $M$-chlennogo priblizheniya klassov funktsii v prostranstvakh Lebega so smeshannoi normoi”, Matematicheskii Zhurnal, 1 (2007), 5–14 http://www.math.kz | MR | Zbl

[19] G. Akishev, “O poryadkakh priblizheniya klassov gladkikh funktsii v prostranstvakh Lebega smeshannoi normoi”, Uchenye zapiski Kazanskogo gos. universiteta, seriya fiz.- mat. nauki, 148, 2006, 5–17 http://www.math.kz | MR | Zbl

[20] O. V. Besov, “Teorema Litlvuda–Peli dlya smeshannoi normy”, Trudy Matematicheskogo Instituta AN SSSR, 170, 1984, 31–36 | MR | Zbl

[21] M. K. Potapov, “Teoremy vlozheniya v smeshannoi metrike”, Trudy Matematicheskogo Instituta AN SSSR, 156, 1980, 143–156 | MR | Zbl

[22] S. M. Nikolskii, “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izvestiya AN SSSR, seriya matematicheskaya, 10 (1946), 207–256

[23] E. M. Galeev, “Poryadkovye otsenki proizvodnykh periodicheskogo mnogomernogo $\alpha$ – yadra Dirikhle v smeshannoi norme”, Matematicheskii Sbornik, 117 (1982), 32–43 | MR | Zbl

[24] G. Akishev, “Ob otsenkakh nailuchshego $M$-chlennogo priblizheniya klassov v raznykh metrikakh”, Evraziiskii Matematicheskii Zhurnal, 3 (2006), 22–33 | MR

[25] G. Akishev, “O poryadkakh $M$-chlennogo priblizheniya klassov periodicheskikh funktsii”, Matematicheskii Zhurnal, 4 (2006), 5–11 http://www.math.kz | MR | Zbl

[26] G. Akishev, “Ob otsenkakh nailuchshego $M$-chlennogo priblizheniya klassa Besova”, Matematicheskii Zhurnal, 4 (2007), 5–11 http://www.math.kz