Strongly regular graphs with parameters $(243,66,9,21)$ is not edge symmetric
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 155-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

The early possible usages and subgraphs of motionless points of automorphisms of strongly regular graphs with parameters $(243,66,9,21)$ have been found. In this work it is proved that this graphs is not rid symmetric.
Keywords: strongly regular graphs, group of automorphisms.
@article{SEMR_2010_7_a16,
     author = {A. A. Tokbaeva},
     title = {Strongly regular graphs with parameters $(243,66,9,21)$ is not edge symmetric},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {155--161},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a16/}
}
TY  - JOUR
AU  - A. A. Tokbaeva
TI  - Strongly regular graphs with parameters $(243,66,9,21)$ is not edge symmetric
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 155
EP  - 161
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a16/
LA  - ru
ID  - SEMR_2010_7_a16
ER  - 
%0 Journal Article
%A A. A. Tokbaeva
%T Strongly regular graphs with parameters $(243,66,9,21)$ is not edge symmetric
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 155-161
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a16/
%G ru
%F SEMR_2010_7_a16
A. A. Tokbaeva. Strongly regular graphs with parameters $(243,66,9,21)$ is not edge symmetric. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 155-161. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a16/

[1] Makhnev A. A., Tokbaeva A. A., “Ob avtomorfizmakh silno regulyarnogo grafa s parametrami $(243,66,9,21)$”, Trudy VIII Mezhdunarodnoi shkoly-konferentsii po teorii grupp (Nalchik 2010), 89–92

[2] Macay M., Siran J., “Search for properties of the missing Moore graph”, Linear Algebra and its Appl., 432 (2009), 2381–2398 | MR

[3] Di Martino L., Wagner A., “The irreducible subgroups of $PSL(5,q)$, $q$ is odd”, Result Math., 2:1 (1979), 54–61 | MR | Zbl

[4] Guralnik R. M., “Subgroups of prime power index in a simple group”, J. Algebra, 81:2 (1983), 304–311 | DOI | MR

[5] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of finite group, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl