On some generalization of the Willmore functional for surfaces in~$\widetilde{SL}_2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 140-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose some generalization of the Willmore functional for closed surfaces in$\widetilde{SL}_2$. We discuss the relation between this functional and isoperimetric problem in $\widetilde{SL}_2$.
Keywords: Thorston’s geometry, Willmore functional.
@article{SEMR_2010_7_a14,
     author = {D. A. Berdinskii},
     title = {On some generalization of the {Willmore} functional for surfaces in~$\widetilde{SL}_2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {140--149},
     publisher = {mathdoc},
     volume = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a14/}
}
TY  - JOUR
AU  - D. A. Berdinskii
TI  - On some generalization of the Willmore functional for surfaces in~$\widetilde{SL}_2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2010
SP  - 140
EP  - 149
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a14/
LA  - ru
ID  - SEMR_2010_7_a14
ER  - 
%0 Journal Article
%A D. A. Berdinskii
%T On some generalization of the Willmore functional for surfaces in~$\widetilde{SL}_2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2010
%P 140-149
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2010_7_a14/
%G ru
%F SEMR_2010_7_a14
D. A. Berdinskii. On some generalization of the Willmore functional for surfaces in~$\widetilde{SL}_2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 140-149. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a14/

[1] Berdinskii D. A., Taimanov I. A., “Poverkhnosti vrascheniya v gruppe Geizenberga i spektralnoe obobschenie funktsionala Uillmora”, Sib. mat. zhurn., 48:3 (2007), 496–511 | MR

[2] Berdinskii D. A., Taimanov I. A., “Poverkhnosti v trekhmernykh gruppakh Li”, Sib. mat. zhurn., 46:6 (2005), 1248–1264 | MR

[3] Taimanov I. A., “Modified Novikov–Veselov equation and differential geometry of surfaces”, Amer. Math. Soc. Transl. Ser. 2, 179, 1997, 133–151 | MR | Zbl

[4] Taimanov I. A., “Predstavlenie Veiershtrassa zamknutykh poverkhnostei v $R^3$”, Funkts. analiz i ego pril., 32:4 (1998), 49–62 | MR | Zbl

[5] Carlos Espinoza, Rotational and parabolic surfaces in $\widetilde{PSL}_2(\mathbb R,\tau)$ and applications, arXiv: 0911.2213

[6] Tomter P., “Constant mean curvature surfaces in the Heisenberg group”, Proceedings of Symposia in Pure Mathematics, 54:1 (1993), 485–495 | MR | Zbl

[7] Figueroa C., Mercuri F., Pedrosa R., “Invariant surfaces of the Heisenberg groups”, Ann. Math. Pura Appl., 177 (1999), 173–194 | DOI | MR | Zbl

[8] Scott P., “The geometries of $3$-manifolds”, Bull. London Math. Soc., 15:5 (1983), 401–487 | DOI | MR | Zbl

[9] Daniel B., “Isometric immersions into $3$-dimensional homogeneous manifolds”, Comment. Math. Helv., 82 (2007), 87–131 | DOI | MR | Zbl

[10] Burago Yu. D., Zalgaller V. A., Vvedenie v rimanovu geometriyu, 1994 | MR

[11] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, 1976 | MR | Zbl