Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2010_7_a14, author = {D. A. Berdinskii}, title = {On some generalization of the {Willmore} functional for surfaces in~$\widetilde{SL}_2$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {140--149}, publisher = {mathdoc}, volume = {7}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2010_7_a14/} }
TY - JOUR AU - D. A. Berdinskii TI - On some generalization of the Willmore functional for surfaces in~$\widetilde{SL}_2$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2010 SP - 140 EP - 149 VL - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2010_7_a14/ LA - ru ID - SEMR_2010_7_a14 ER -
D. A. Berdinskii. On some generalization of the Willmore functional for surfaces in~$\widetilde{SL}_2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 7 (2010), pp. 140-149. http://geodesic.mathdoc.fr/item/SEMR_2010_7_a14/
[1] Berdinskii D. A., Taimanov I. A., “Poverkhnosti vrascheniya v gruppe Geizenberga i spektralnoe obobschenie funktsionala Uillmora”, Sib. mat. zhurn., 48:3 (2007), 496–511 | MR
[2] Berdinskii D. A., Taimanov I. A., “Poverkhnosti v trekhmernykh gruppakh Li”, Sib. mat. zhurn., 46:6 (2005), 1248–1264 | MR
[3] Taimanov I. A., “Modified Novikov–Veselov equation and differential geometry of surfaces”, Amer. Math. Soc. Transl. Ser. 2, 179, 1997, 133–151 | MR | Zbl
[4] Taimanov I. A., “Predstavlenie Veiershtrassa zamknutykh poverkhnostei v $R^3$”, Funkts. analiz i ego pril., 32:4 (1998), 49–62 | MR | Zbl
[5] Carlos Espinoza, Rotational and parabolic surfaces in $\widetilde{PSL}_2(\mathbb R,\tau)$ and applications, arXiv: 0911.2213
[6] Tomter P., “Constant mean curvature surfaces in the Heisenberg group”, Proceedings of Symposia in Pure Mathematics, 54:1 (1993), 485–495 | MR | Zbl
[7] Figueroa C., Mercuri F., Pedrosa R., “Invariant surfaces of the Heisenberg groups”, Ann. Math. Pura Appl., 177 (1999), 173–194 | DOI | MR | Zbl
[8] Scott P., “The geometries of $3$-manifolds”, Bull. London Math. Soc., 15:5 (1983), 401–487 | DOI | MR | Zbl
[9] Daniel B., “Isometric immersions into $3$-dimensional homogeneous manifolds”, Comment. Math. Helv., 82 (2007), 87–131 | DOI | MR | Zbl
[10] Burago Yu. D., Zalgaller V. A., Vvedenie v rimanovu geometriyu, 1994 | MR
[11] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, 1976 | MR | Zbl